mirror of
https://github.com/SashLilac/cambridge.git
synced 2024-11-22 07:49:02 -06:00
350 lines
13 KiB
Lua
350 lines
13 KiB
Lua
--- Simplex Noise
|
||
-- @module simplex
|
||
|
||
--
|
||
-- Based on code in "Simplex noise demystified", by Stefan Gustavson
|
||
-- www.itn.liu.se/~stegu/simplexnoise/simplexnoise.pdf
|
||
--
|
||
-- Thanks to Mike Pall for some cleanup and improvements (and for LuaJIT!)
|
||
--
|
||
-- Permission is hereby granted, free of charge, to any person obtaining
|
||
-- a copy of this software and associated documentation files (the
|
||
-- "Software"), to deal in the Software without restriction, including
|
||
-- without limitation the rights to use, copy, modify, merge, publish,
|
||
-- distribute, sublicense, and/or sell copies of the Software, and to
|
||
-- permit persons to whom the Software is furnished to do so, subject to
|
||
-- the following conditions:
|
||
--
|
||
-- The above copyright notice and this permission notice shall be
|
||
-- included in all copies or substantial portions of the Software.
|
||
--
|
||
-- THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
|
||
-- EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
|
||
-- MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
|
||
-- IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
|
||
-- CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
|
||
-- TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
|
||
-- SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
|
||
--
|
||
-- [ MIT license: http://www.opensource.org/licenses/mit-license.php ]
|
||
--
|
||
|
||
if _G.love and _G.love.math then
|
||
return love.math.noise
|
||
end
|
||
|
||
-- Bail out with dummy module if FFI is missing.
|
||
local has_ffi, ffi = pcall(require, "ffi")
|
||
if not has_ffi then
|
||
return function()
|
||
return 0
|
||
end
|
||
end
|
||
|
||
-- Modules --
|
||
local bit = require("bit")
|
||
|
||
-- Imports --
|
||
local band = bit.band
|
||
local bor = bit.bor
|
||
local floor = math.floor
|
||
local lshift = bit.lshift
|
||
local max = math.max
|
||
local rshift = bit.rshift
|
||
|
||
-- Permutation of 0-255, replicated to allow easy indexing with sums of two bytes --
|
||
local Perms = ffi.new("uint8_t[512]", {
|
||
151, 160, 137, 91, 90, 15, 131, 13, 201, 95, 96, 53, 194, 233, 7, 225,
|
||
140, 36, 103, 30, 69, 142, 8, 99, 37, 240, 21, 10, 23, 190, 6, 148,
|
||
247, 120, 234, 75, 0, 26, 197, 62, 94, 252, 219, 203, 117, 35, 11, 32,
|
||
57, 177, 33, 88, 237, 149, 56, 87, 174, 20, 125, 136, 171, 168, 68, 175,
|
||
74, 165, 71, 134, 139, 48, 27, 166, 77, 146, 158, 231, 83, 111, 229, 122,
|
||
60, 211, 133, 230, 220, 105, 92, 41, 55, 46, 245, 40, 244, 102, 143, 54,
|
||
65, 25, 63, 161, 1, 216, 80, 73, 209, 76, 132, 187, 208, 89, 18, 169,
|
||
200, 196, 135, 130, 116, 188, 159, 86, 164, 100, 109, 198, 173, 186, 3, 64,
|
||
52, 217, 226, 250, 124, 123, 5, 202, 38, 147, 118, 126, 255, 82, 85, 212,
|
||
207, 206, 59, 227, 47, 16, 58, 17, 182, 189, 28, 42, 223, 183, 170, 213,
|
||
119, 248, 152, 2, 44, 154, 163, 70, 221, 153, 101, 155, 167, 43, 172, 9,
|
||
129, 22, 39, 253, 19, 98, 108, 110, 79, 113, 224, 232, 178, 185, 112, 104,
|
||
218, 246, 97, 228, 251, 34, 242, 193, 238, 210, 144, 12, 191, 179, 162, 241,
|
||
81, 51, 145, 235, 249, 14, 239, 107, 49, 192, 214, 31, 181, 199, 106, 157,
|
||
184, 84, 204, 176, 115, 121, 50, 45, 127, 4, 150, 254, 138, 236, 205, 93,
|
||
222, 114, 67, 29, 24, 72, 243, 141, 128, 195, 78, 66, 215, 61, 156, 180
|
||
})
|
||
|
||
-- The above, mod 12 for each element --
|
||
local Perms12 = ffi.new("uint8_t[512]")
|
||
|
||
for i = 0, 255 do
|
||
local x = Perms[i] % 12
|
||
|
||
Perms[i + 256], Perms12[i], Perms12[i + 256] = Perms[i], x, x
|
||
end
|
||
|
||
-- Gradients for 2D, 3D case --
|
||
local Grads3 = ffi.new("const double[12][3]",
|
||
{ 1, 1, 0 }, { -1, 1, 0 }, { 1, -1, 0 }, { -1, -1, 0 },
|
||
{ 1, 0, 1 }, { -1, 0, 1 }, { 1, 0, -1 }, { -1, 0, -1 },
|
||
{ 0, 1, 1 }, { 0, -1, 1 }, { 0, 1, -1 }, { 0, -1, -1 }
|
||
)
|
||
|
||
-- 2D weight contribution
|
||
local function GetN2(bx, by, x, y)
|
||
local t = .5 - x * x - y * y
|
||
local index = Perms12[bx + Perms[by]]
|
||
|
||
return max(0, (t * t) * (t * t)) * (Grads3[index][0] * x + Grads3[index][1] * y)
|
||
end
|
||
|
||
local function simplex_2d(x, y)
|
||
--[[
|
||
2D skew factors:
|
||
F = (math.sqrt(3) - 1) / 2
|
||
G = (3 - math.sqrt(3)) / 6
|
||
G2 = 2 * G - 1
|
||
]]
|
||
|
||
-- Skew the input space to determine which simplex cell we are in.
|
||
local s = (x + y) * 0.366025403 -- F
|
||
local ix, iy = floor(x + s), floor(y + s)
|
||
|
||
-- Unskew the cell origin back to (x, y) space.
|
||
local t = (ix + iy) * 0.211324865 -- G
|
||
local x0 = x + t - ix
|
||
local y0 = y + t - iy
|
||
|
||
-- Calculate the contribution from the two fixed corners.
|
||
-- A step of (1,0) in (i,j) means a step of (1-G,-G) in (x,y), and
|
||
-- A step of (0,1) in (i,j) means a step of (-G,1-G) in (x,y).
|
||
ix, iy = band(ix, 255), band(iy, 255)
|
||
|
||
local n0 = GetN2(ix, iy, x0, y0)
|
||
local n2 = GetN2(ix + 1, iy + 1, x0 - 0.577350270, y0 - 0.577350270) -- G2
|
||
|
||
--[[
|
||
Determine other corner based on simplex (equilateral triangle) we are in:
|
||
if x0 > y0 then
|
||
ix, x1 = ix + 1, x1 - 1
|
||
else
|
||
iy, y1 = iy + 1, y1 - 1
|
||
end
|
||
]]
|
||
local xi = rshift(floor(y0 - x0), 31) -- y0 < x0
|
||
local n1 = GetN2(ix + xi, iy + (1 - xi), x0 + 0.211324865 - xi, y0 - 0.788675135 + xi) -- x0 + G - xi, y0 + G - (1 - xi)
|
||
|
||
-- Add contributions from each corner to get the final noise value.
|
||
-- The result is scaled to return values in the interval [-1,1].
|
||
return 70.1480580019 * (n0 + n1 + n2)
|
||
end
|
||
|
||
-- 3D weight contribution
|
||
local function GetN3(ix, iy, iz, x, y, z)
|
||
local t = .6 - x * x - y * y - z * z
|
||
local index = Perms12[ix + Perms[iy + Perms[iz]]]
|
||
|
||
return max(0, (t * t) * (t * t)) * (Grads3[index][0] * x + Grads3[index][1] * y + Grads3[index][2] * z)
|
||
end
|
||
|
||
local function simplex_3d(x, y, z)
|
||
--[[
|
||
3D skew factors:
|
||
F = 1 / 3
|
||
G = 1 / 6
|
||
G2 = 2 * G
|
||
G3 = 3 * G - 1
|
||
]]
|
||
|
||
-- Skew the input space to determine which simplex cell we are in.
|
||
local s = (x + y + z) * 0.333333333 -- F
|
||
local ix, iy, iz = floor(x + s), floor(y + s), floor(z + s)
|
||
|
||
-- Unskew the cell origin back to (x, y, z) space.
|
||
local t = (ix + iy + iz) * 0.166666667 -- G
|
||
local x0 = x + t - ix
|
||
local y0 = y + t - iy
|
||
local z0 = z + t - iz
|
||
|
||
-- Calculate the contribution from the two fixed corners.
|
||
-- A step of (1,0,0) in (i,j,k) means a step of (1-G,-G,-G) in (x,y,z);
|
||
-- a step of (0,1,0) in (i,j,k) means a step of (-G,1-G,-G) in (x,y,z);
|
||
-- a step of (0,0,1) in (i,j,k) means a step of (-G,-G,1-G) in (x,y,z).
|
||
ix, iy, iz = band(ix, 255), band(iy, 255), band(iz, 255)
|
||
|
||
local n0 = GetN3(ix, iy, iz, x0, y0, z0)
|
||
local n3 = GetN3(ix + 1, iy + 1, iz + 1, x0 - 0.5, y0 - 0.5, z0 - 0.5) -- G3
|
||
|
||
--[[
|
||
Determine other corners based on simplex (skewed tetrahedron) we are in:
|
||
|
||
if x0 >= y0 then -- ~A
|
||
if y0 >= z0 then -- ~A and ~B
|
||
i1, j1, k1, i2, j2, k2 = 1, 0, 0, 1, 1, 0
|
||
elseif x0 >= z0 then -- ~A and B and ~C
|
||
i1, j1, k1, i2, j2, k2 = 1, 0, 0, 1, 0, 1
|
||
else -- ~A and B and C
|
||
i1, j1, k1, i2, j2, k2 = 0, 0, 1, 1, 0, 1
|
||
end
|
||
else -- A
|
||
if y0 < z0 then -- A and B
|
||
i1, j1, k1, i2, j2, k2 = 0, 0, 1, 0, 1, 1
|
||
elseif x0 < z0 then -- A and ~B and C
|
||
i1, j1, k1, i2, j2, k2 = 0, 1, 0, 0, 1, 1
|
||
else -- A and ~B and ~C
|
||
i1, j1, k1, i2, j2, k2 = 0, 1, 0, 1, 1, 0
|
||
end
|
||
end
|
||
]]
|
||
|
||
local xLy = rshift(floor(x0 - y0), 31) -- x0 < y0
|
||
local yLz = rshift(floor(y0 - z0), 31) -- y0 < z0
|
||
local xLz = rshift(floor(x0 - z0), 31) -- x0 < z0
|
||
|
||
local i1 = band(1 - xLy, bor(1 - yLz, 1 - xLz)) -- x0 >= y0 and (y0 >= z0 or x0 >= z0)
|
||
local j1 = band(xLy, 1 - yLz) -- x0 < y0 and y0 >= z0
|
||
local k1 = band(yLz, bor(xLy, xLz)) -- y0 < z0 and (x0 < y0 or x0 < z0)
|
||
|
||
local i2 = bor(1 - xLy, band(1 - yLz, 1 - xLz)) -- x0 >= y0 or (y0 >= z0 and x0 >= z0)
|
||
local j2 = bor(xLy, 1 - yLz) -- x0 < y0 or y0 >= z0
|
||
local k2 = bor(band(1 - xLy, yLz), band(xLy, bor(yLz, xLz))) -- (x0 >= y0 and y0 < z0) or (x0 < y0 and (y0 < z0 or x0 < z0))
|
||
|
||
local n1 = GetN3(ix + i1, iy + j1, iz + k1, x0 + 0.166666667 - i1, y0 + 0.166666667 - j1, z0 + 0.166666667 - k1) -- G
|
||
local n2 = GetN3(ix + i2, iy + j2, iz + k2, x0 + 0.333333333 - i2, y0 + 0.333333333 - j2, z0 + 0.333333333 - k2) -- G2
|
||
|
||
-- Add contributions from each corner to get the final noise value.
|
||
-- The result is scaled to stay just inside [-1,1]
|
||
return 28.452842 * (n0 + n1 + n2 + n3)
|
||
end
|
||
|
||
-- Gradients for 4D case --
|
||
local Grads4 = ffi.new("const double[32][4]",
|
||
{ 0, 1, 1, 1 }, { 0, 1, 1, -1 }, { 0, 1, -1, 1 }, { 0, 1, -1, -1 },
|
||
{ 0, -1, 1, 1 }, { 0, -1, 1, -1 }, { 0, -1, -1, 1 }, { 0, -1, -1, -1 },
|
||
{ 1, 0, 1, 1 }, { 1, 0, 1, -1 }, { 1, 0, -1, 1 }, { 1, 0, -1, -1 },
|
||
{ -1, 0, 1, 1 }, { -1, 0, 1, -1 }, { -1, 0, -1, 1 }, { -1, 0, -1, -1 },
|
||
{ 1, 1, 0, 1 }, { 1, 1, 0, -1 }, { 1, -1, 0, 1 }, { 1, -1, 0, -1 },
|
||
{ -1, 1, 0, 1 }, { -1, 1, 0, -1 }, { -1, -1, 0, 1 }, { -1, -1, 0, -1 },
|
||
{ 1, 1, 1, 0 }, { 1, 1, -1, 0 }, { 1, -1, 1, 0 }, { 1, -1, -1, 0 },
|
||
{ -1, 1, 1, 0 }, { -1, 1, -1, 0 }, { -1, -1, 1, 0 }, { -1, -1, -1, 0 }
|
||
)
|
||
|
||
-- 4D weight contribution
|
||
local function GetN4(ix, iy, iz, iw, x, y, z, w)
|
||
local t = .6 - x * x - y * y - z * z - w * w
|
||
local index = band(Perms[ix + Perms[iy + Perms[iz + Perms[iw]]]], 0x1F)
|
||
|
||
return max(0, (t * t) * (t * t)) * (Grads4[index][0] * x + Grads4[index][1] * y + Grads4[index][2] * z + Grads4[index][3] * w)
|
||
end
|
||
|
||
-- A lookup table to traverse the simplex around a given point in 4D.
|
||
-- Details can be found where this table is used, in the 4D noise method.
|
||
local Simplex = ffi.new("uint8_t[64][4]",
|
||
{ 0, 1, 2, 3 }, { 0, 1, 3, 2 }, {}, { 0, 2, 3, 1 }, {}, {}, {}, { 1, 2, 3 },
|
||
{ 0, 2, 1, 3 }, {}, { 0, 3, 1, 2 }, { 0, 3, 2, 1 }, {}, {}, {}, { 1, 3, 2 },
|
||
{}, {}, {}, {}, {}, {}, {}, {},
|
||
{ 1, 2, 0, 3 }, {}, { 1, 3, 0, 2 }, {}, {}, {}, { 2, 3, 0, 1 }, { 2, 3, 1 },
|
||
{ 1, 0, 2, 3 }, { 1, 0, 3, 2 }, {}, {}, {}, { 2, 0, 3, 1 }, {}, { 2, 1, 3 },
|
||
{}, {}, {}, {}, {}, {}, {}, {},
|
||
{ 2, 0, 1, 3 }, {}, {}, {}, { 3, 0, 1, 2 }, { 3, 0, 2, 1 }, {}, { 3, 1, 2 },
|
||
{ 2, 1, 0, 3 }, {}, {}, {}, { 3, 1, 0, 2 }, {}, { 3, 2, 0, 1 }, { 3, 2, 1 }
|
||
)
|
||
|
||
-- Convert the above indices to masks that can be shifted / anded into offsets --
|
||
for i = 0, 63 do
|
||
Simplex[i][0] = lshift(1, Simplex[i][0]) - 1
|
||
Simplex[i][1] = lshift(1, Simplex[i][1]) - 1
|
||
Simplex[i][2] = lshift(1, Simplex[i][2]) - 1
|
||
Simplex[i][3] = lshift(1, Simplex[i][3]) - 1
|
||
end
|
||
|
||
local function simplex_4d(x, y, z, w)
|
||
--[[
|
||
4D skew factors:
|
||
F = (math.sqrt(5) - 1) / 4
|
||
G = (5 - math.sqrt(5)) / 20
|
||
G2 = 2 * G
|
||
G3 = 3 * G
|
||
G4 = 4 * G - 1
|
||
]]
|
||
|
||
-- Skew the input space to determine which simplex cell we are in.
|
||
local s = (x + y + z + w) * 0.309016994 -- F
|
||
local ix, iy, iz, iw = floor(x + s), floor(y + s), floor(z + s), floor(w + s)
|
||
|
||
-- Unskew the cell origin back to (x, y, z) space.
|
||
local t = (ix + iy + iz + iw) * 0.138196601 -- G
|
||
local x0 = x + t - ix
|
||
local y0 = y + t - iy
|
||
local z0 = z + t - iz
|
||
local w0 = w + t - iw
|
||
|
||
-- For the 4D case, the simplex is a 4D shape I won't even try to describe.
|
||
-- To find out which of the 24 possible simplices we're in, we need to
|
||
-- determine the magnitude ordering of x0, y0, z0 and w0.
|
||
-- The method below is a good way of finding the ordering of x,y,z,w and
|
||
-- then find the correct traversal order for the simplex we<77>re in.
|
||
-- First, six pair-wise comparisons are performed between each possible pair
|
||
-- of the four coordinates, and the results are used to add up binary bits
|
||
-- for an integer index.
|
||
local c1 = band(rshift(floor(y0 - x0), 26), 32)
|
||
local c2 = band(rshift(floor(z0 - x0), 27), 16)
|
||
local c3 = band(rshift(floor(z0 - y0), 28), 8)
|
||
local c4 = band(rshift(floor(w0 - x0), 29), 4)
|
||
local c5 = band(rshift(floor(w0 - y0), 30), 2)
|
||
local c6 = rshift(floor(w0 - z0), 31)
|
||
|
||
-- Simplex[c] is a 4-vector with the numbers 0, 1, 2 and 3 in some order.
|
||
-- Many values of c will never occur, since e.g. x>y>z>w makes x<z, y<w and x<w
|
||
-- impossible. Only the 24 indices which have non-zero entries make any sense.
|
||
-- We use a thresholding to set the coordinates in turn from the largest magnitude.
|
||
local c = c1 + c2 + c3 + c4 + c5 + c6
|
||
|
||
-- The number 3 (i.e. bit 2) in the "simplex" array is at the position of the largest coordinate.
|
||
local i1 = rshift(Simplex[c][0], 2)
|
||
local j1 = rshift(Simplex[c][1], 2)
|
||
local k1 = rshift(Simplex[c][2], 2)
|
||
local l1 = rshift(Simplex[c][3], 2)
|
||
|
||
-- The number 2 (i.e. bit 1) in the "simplex" array is at the second largest coordinate.
|
||
local i2 = band(rshift(Simplex[c][0], 1), 1)
|
||
local j2 = band(rshift(Simplex[c][1], 1), 1)
|
||
local k2 = band(rshift(Simplex[c][2], 1), 1)
|
||
local l2 = band(rshift(Simplex[c][3], 1), 1)
|
||
|
||
-- The number 1 (i.e. bit 0) in the "simplex" array is at the second smallest coordinate.
|
||
local i3 = band(Simplex[c][0], 1)
|
||
local j3 = band(Simplex[c][1], 1)
|
||
local k3 = band(Simplex[c][2], 1)
|
||
local l3 = band(Simplex[c][3], 1)
|
||
|
||
-- Work out the hashed gradient indices of the five simplex corners
|
||
-- Sum up and scale the result to cover the range [-1,1]
|
||
ix, iy, iz, iw = band(ix, 255), band(iy, 255), band(iz, 255), band(iw, 255)
|
||
|
||
local n0 = GetN4(ix, iy, iz, iw, x0, y0, z0, w0)
|
||
local n1 = GetN4(ix + i1, iy + j1, iz + k1, iw + l1, x0 + 0.138196601 - i1, y0 + 0.138196601 - j1, z0 + 0.138196601 - k1, w0 + 0.138196601 - l1) -- G
|
||
local n2 = GetN4(ix + i2, iy + j2, iz + k2, iw + l2, x0 + 0.276393202 - i2, y0 + 0.276393202 - j2, z0 + 0.276393202 - k2, w0 + 0.276393202 - l2) -- G2
|
||
local n3 = GetN4(ix + i3, iy + j3, iz + k3, iw + l3, x0 + 0.414589803 - i3, y0 + 0.414589803 - j3, z0 + 0.414589803 - k3, w0 + 0.414589803 - l3) -- G3
|
||
local n4 = GetN4(ix + 1, iy + 1, iz + 1, iw + 1, x0 - 0.447213595, y0 - 0.447213595, z0 - 0.447213595, w0 - 0.447213595) -- G4
|
||
|
||
return 2.210600293 * (n0 + n1 + n2 + n3 + n4)
|
||
end
|
||
|
||
--- Simplex Noise
|
||
-- @param x
|
||
-- @param y
|
||
-- @param z optional
|
||
-- @param w optional
|
||
-- @return Noise value in the range [-1, +1]
|
||
return function(x, y, z, w)
|
||
if w then
|
||
return simplex_4d(x, y, z, w)
|
||
end
|
||
if z then
|
||
return simplex_3d(x, y, z)
|
||
end
|
||
if y then
|
||
return simplex_2d(x, y)
|
||
end
|
||
error "Simplex requires at least two arguments"
|
||
end
|