mirror of
https://github.com/SashLilac/cambridge.git
synced 2025-01-22 17:49:03 -06:00
Initial 3D blocks support
This commit is contained in:
parent
e5892c0fae
commit
dcde2a380d
60
libs/cpml/LICENSE.md
Normal file
60
libs/cpml/LICENSE.md
Normal file
@ -0,0 +1,60 @@
|
||||
# Licenses
|
||||
|
||||
CPML is Copyright (c) 2016 Colby Klein <shakesoda@gmail.com>.
|
||||
|
||||
CPML is Copyright (c) 2016 Landon Manning <lmanning17@gmail.com>.
|
||||
|
||||
Code in vec3.lua is derived from hump.vector. (c) 2010-2013 Matthias Richter. MIT.
|
||||
|
||||
Portions of mat4.lua are from LuaMatrix, (c) 2010 Michael Lutz. MIT.
|
||||
|
||||
Code in simplex.lua is (c) 2011 Stefan Gustavson. MIT.
|
||||
|
||||
Code in bound2.lua and bound3.lua are (c) 2018 Andi McClure. MIT.
|
||||
|
||||
Code in quat.lua is from Andrew Stacey and covered under the CC0 license.
|
||||
|
||||
Code in octree.lua is derived from UnityOctree. (c) 2014 Nition. BSD-2-Clause.
|
||||
|
||||
# The MIT License (MIT)
|
||||
|
||||
Permission is hereby granted, free of charge, to any person obtaining a copy
|
||||
of this software and associated documentation files (the "Software"), to deal
|
||||
in the Software without restriction, including without limitation the rights
|
||||
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
||||
copies of the Software, and to permit persons to whom the Software is
|
||||
furnished to do so, subject to the following conditions:
|
||||
|
||||
The above copyright notice and this permission notice shall be included in all
|
||||
copies or substantial portions of the Software.
|
||||
|
||||
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||||
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||||
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||||
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||||
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
||||
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
||||
SOFTWARE.
|
||||
|
||||
# The BSD License (BSD-2-Clause)
|
||||
|
||||
Redistribution and use in source and binary forms, with or without
|
||||
modification, are permitted provided that the following conditions are met:
|
||||
|
||||
* Redistributions of source code must retain the above copyright notice, this
|
||||
list of conditions and the following disclaimer.
|
||||
|
||||
* Redistributions in binary form must reproduce the above copyright notice,
|
||||
this list of conditions and the following disclaimer in the documentation
|
||||
and/or other materials provided with the distribution.
|
||||
|
||||
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
||||
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
||||
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
||||
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
|
||||
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
||||
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
||||
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
||||
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
||||
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||||
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
17
libs/cpml/_private_precond.lua
Normal file
17
libs/cpml/_private_precond.lua
Normal file
@ -0,0 +1,17 @@
|
||||
-- Preconditions for cpml functions.
|
||||
local precond = {}
|
||||
|
||||
|
||||
function precond.typeof(t, expected, msg)
|
||||
if type(t) ~= expected then
|
||||
error(("%s: %s (<%s> expected)"):format(msg, type(t), expected), 3)
|
||||
end
|
||||
end
|
||||
|
||||
function precond.assert(cond, msg, ...)
|
||||
if not cond then
|
||||
error(msg:format(...), 3)
|
||||
end
|
||||
end
|
||||
|
||||
return precond
|
16
libs/cpml/_private_utils.lua
Normal file
16
libs/cpml/_private_utils.lua
Normal file
@ -0,0 +1,16 @@
|
||||
-- Functions exported by utils.lua but needed by vec2 or vec3 (which utils.lua requires)
|
||||
|
||||
local private = {}
|
||||
local floor = math.floor
|
||||
local ceil = math.ceil
|
||||
|
||||
function private.round(value, precision)
|
||||
if precision then return private.round(value / precision) * precision end
|
||||
return value >= 0 and floor(value+0.5) or ceil(value-0.5)
|
||||
end
|
||||
|
||||
function private.is_nan(a)
|
||||
return a ~= a
|
||||
end
|
||||
|
||||
return private
|
199
libs/cpml/bound2.lua
Normal file
199
libs/cpml/bound2.lua
Normal file
@ -0,0 +1,199 @@
|
||||
--- A 2 component bounding box.
|
||||
-- @module bound2
|
||||
|
||||
local modules = (...):gsub('%.[^%.]+$', '') .. "."
|
||||
local vec2 = require(modules .. "vec2")
|
||||
|
||||
local bound2 = {}
|
||||
local bound2_mt = {}
|
||||
|
||||
-- Private constructor.
|
||||
local function new(min, max)
|
||||
return setmetatable({
|
||||
min=min, -- min: vec2, minimum value for each component
|
||||
max=max, -- max: vec2, maximum value for each component
|
||||
}, bound2_mt)
|
||||
end
|
||||
|
||||
-- Do the check to see if JIT is enabled. If so use the optimized FFI structs.
|
||||
local status, ffi
|
||||
if type(jit) == "table" and jit.status() then
|
||||
status, ffi = pcall(require, "ffi")
|
||||
if status then
|
||||
ffi.cdef "typedef struct { cpml_vec2 min, max; } cpml_bound2;"
|
||||
new = ffi.typeof("cpml_bound2")
|
||||
end
|
||||
end
|
||||
|
||||
bound2.zero = new(vec2.zero, vec2.zero)
|
||||
|
||||
--- The public constructor.
|
||||
-- @param min Can be of two types: </br>
|
||||
-- vec2 min, minimum value for each component
|
||||
-- nil Create bound at single point 0,0
|
||||
-- @tparam vec2 max, maximum value for each component
|
||||
-- @treturn bound2 out
|
||||
function bound2.new(min, max)
|
||||
if min and max then
|
||||
return new(min:clone(), max:clone())
|
||||
elseif min or max then
|
||||
error("Unexpected nil argument to bound2.new")
|
||||
else
|
||||
return new(vec2.zero, vec2.zero)
|
||||
end
|
||||
end
|
||||
|
||||
--- Clone a bound.
|
||||
-- @tparam bound2 a bound to be cloned
|
||||
-- @treturn bound2 out
|
||||
function bound2.clone(a)
|
||||
return new(a.min, a.max)
|
||||
end
|
||||
|
||||
--- Construct a bound covering one or two points
|
||||
-- @tparam vec2 a Any vector
|
||||
-- @tparam vec2 b Any second vector (optional)
|
||||
-- @treturn vec2 Minimum bound containing the given points
|
||||
function bound2.at(a, b) -- "bounded by". b may be nil
|
||||
if b then
|
||||
return bound2.new(a,b):check()
|
||||
else
|
||||
return bound2.zero:with_center(a)
|
||||
end
|
||||
end
|
||||
|
||||
--- Extend bound to include point
|
||||
-- @tparam bound2 a bound
|
||||
-- @tparam vec2 point to include
|
||||
-- @treturn bound2 Bound covering current min, current max and new point
|
||||
function bound2.extend(a, center)
|
||||
return bound2.new(a.min:component_min(center), a.max:component_max(center))
|
||||
end
|
||||
|
||||
--- Extend bound to entirety of other bound
|
||||
-- @tparam bound2 a bound
|
||||
-- @tparam bound2 bound to cover
|
||||
-- @treturn bound2 Bound covering current min and max of each bound in the pair
|
||||
function bound2.extend_bound(a, b)
|
||||
return a:extend(b.min):extend(b.max)
|
||||
end
|
||||
|
||||
--- Get size of bounding box as a vector
|
||||
-- @tparam bound2 a bound
|
||||
-- @treturn vec2 Vector spanning min to max points
|
||||
function bound2.size(a)
|
||||
return a.max - a.min
|
||||
end
|
||||
|
||||
--- Resize bounding box from minimum corner
|
||||
-- @tparam bound2 a bound
|
||||
-- @tparam vec2 new size
|
||||
-- @treturn bound2 resized bound
|
||||
function bound2.with_size(a, size)
|
||||
return bound2.new(a.min, a.min + size)
|
||||
end
|
||||
|
||||
--- Get half-size of bounding box as a vector. A more correct term for this is probably "apothem"
|
||||
-- @tparam bound2 a bound
|
||||
-- @treturn vec2 Vector spanning center to max point
|
||||
function bound2.radius(a)
|
||||
return a:size()/2
|
||||
end
|
||||
|
||||
--- Get center of bounding box
|
||||
-- @tparam bound2 a bound
|
||||
-- @treturn bound2 Point in center of bound
|
||||
function bound2.center(a)
|
||||
return (a.min + a.max)/2
|
||||
end
|
||||
|
||||
--- Move bounding box to new center
|
||||
-- @tparam bound2 a bound
|
||||
-- @tparam vec2 new center
|
||||
-- @treturn bound2 Bound with same size as input but different center
|
||||
function bound2.with_center(a, center)
|
||||
return bound2.offset(a, center - a:center())
|
||||
end
|
||||
|
||||
--- Resize bounding box from center
|
||||
-- @tparam bound2 a bound
|
||||
-- @tparam vec2 new size
|
||||
-- @treturn bound2 resized bound
|
||||
function bound2.with_size_centered(a, size)
|
||||
local center = a:center()
|
||||
local rad = size/2
|
||||
return bound2.new(center - rad, center + rad)
|
||||
end
|
||||
|
||||
--- Convert possibly-invalid bounding box to valid one
|
||||
-- @tparam bound2 a bound
|
||||
-- @treturn bound2 bound with all components corrected for min-max property
|
||||
function bound2.check(a)
|
||||
if a.min.x > a.max.x or a.min.y > a.max.y then
|
||||
return bound2.new(vec2.component_min(a.min, a.max), vec2.component_max(a.min, a.max))
|
||||
end
|
||||
return a
|
||||
end
|
||||
|
||||
--- Shrink bounding box with fixed margin
|
||||
-- @tparam bound2 a bound
|
||||
-- @tparam vec2 a margin
|
||||
-- @treturn bound2 bound with margin subtracted from all edges. May not be valid, consider calling check()
|
||||
function bound2.inset(a, v)
|
||||
return bound2.new(a.min + v, a.max - v)
|
||||
end
|
||||
|
||||
--- Expand bounding box with fixed margin
|
||||
-- @tparam bound2 a bound
|
||||
-- @tparam vec2 a margin
|
||||
-- @treturn bound2 bound with margin added to all edges. May not be valid, consider calling check()
|
||||
function bound2.outset(a, v)
|
||||
return bound2.new(a.min - v, a.max + v)
|
||||
end
|
||||
|
||||
--- Offset bounding box
|
||||
-- @tparam bound2 a bound
|
||||
-- @tparam vec2 offset
|
||||
-- @treturn bound2 bound with same size, but position moved by offset
|
||||
function bound2.offset(a, v)
|
||||
return bound2.new(a.min + v, a.max + v)
|
||||
end
|
||||
|
||||
--- Test if point in bound
|
||||
-- @tparam bound2 a bound
|
||||
-- @tparam vec2 point to test
|
||||
-- @treturn boolean true if point in bounding box
|
||||
function bound2.contains(a, v)
|
||||
return a.min.x <= v.x and a.min.y <= v.y
|
||||
and a.max.x >= v.x and a.max.y >= v.y
|
||||
end
|
||||
|
||||
-- Round all components of all vectors to nearest int (or other precision).
|
||||
-- @tparam vec3 a bound to round.
|
||||
-- @tparam precision Digits after the decimal (round number if unspecified)
|
||||
-- @treturn vec3 Rounded bound
|
||||
function bound2.round(a, precision)
|
||||
return bound2.new(a.min:round(precision), a.max:round(precision))
|
||||
end
|
||||
|
||||
--- Return a formatted string.
|
||||
-- @tparam bound2 a bound to be turned into a string
|
||||
-- @treturn string formatted
|
||||
function bound2.to_string(a)
|
||||
return string.format("(%s-%s)", a.min, a.max)
|
||||
end
|
||||
|
||||
bound2_mt.__index = bound2
|
||||
bound2_mt.__tostring = bound2.to_string
|
||||
|
||||
function bound2_mt.__call(_, a, b)
|
||||
return bound2.new(a, b)
|
||||
end
|
||||
|
||||
if status then
|
||||
xpcall(function() -- Allow this to silently fail; assume failure means someone messed with package.loaded
|
||||
ffi.metatype(new, bound2_mt)
|
||||
end, function() end)
|
||||
end
|
||||
|
||||
return setmetatable({}, bound2_mt)
|
199
libs/cpml/bound3.lua
Normal file
199
libs/cpml/bound3.lua
Normal file
@ -0,0 +1,199 @@
|
||||
--- A 3-component axis-aligned bounding box.
|
||||
-- @module bound3
|
||||
|
||||
local modules = (...):gsub('%.[^%.]+$', '') .. "."
|
||||
local vec3 = require(modules .. "vec3")
|
||||
|
||||
local bound3 = {}
|
||||
local bound3_mt = {}
|
||||
|
||||
-- Private constructor.
|
||||
local function new(min, max)
|
||||
return setmetatable({
|
||||
min=min, -- min: vec3, minimum value for each component
|
||||
max=max -- max: vec3, maximum value for each component
|
||||
}, bound3_mt)
|
||||
end
|
||||
|
||||
-- Do the check to see if JIT is enabled. If so use the optimized FFI structs.
|
||||
local status, ffi
|
||||
if type(jit) == "table" and jit.status() then
|
||||
status, ffi = pcall(require, "ffi")
|
||||
if status then
|
||||
ffi.cdef "typedef struct { cpml_vec3 min, max; } cpml_bound3;"
|
||||
new = ffi.typeof("cpml_bound3")
|
||||
end
|
||||
end
|
||||
|
||||
bound3.zero = new(vec3.zero, vec3.zero)
|
||||
|
||||
--- The public constructor.
|
||||
-- @param min Can be of two types: </br>
|
||||
-- vec3 min, minimum value for each component
|
||||
-- nil Create bound at single point 0,0,0
|
||||
-- @tparam vec3 max, maximum value for each component
|
||||
-- @treturn bound3 out
|
||||
function bound3.new(min, max)
|
||||
if min and max then
|
||||
return new(min:clone(), max:clone())
|
||||
elseif min or max then
|
||||
error("Unexpected nil argument to bound3.new")
|
||||
else
|
||||
return new(vec3.zero, vec3.zero)
|
||||
end
|
||||
end
|
||||
|
||||
--- Clone a bound.
|
||||
-- @tparam bound3 a bound to be cloned
|
||||
-- @treturn bound3 out
|
||||
function bound3.clone(a)
|
||||
return new(a.min, a.max)
|
||||
end
|
||||
|
||||
--- Construct a bound covering one or two points
|
||||
-- @tparam vec3 a Any vector
|
||||
-- @tparam vec3 b Any second vector (optional)
|
||||
-- @treturn vec3 Minimum bound containing the given points
|
||||
function bound3.at(a, b) -- "bounded by". b may be nil
|
||||
if b then
|
||||
return bound3.new(a,b):check()
|
||||
else
|
||||
return bound3.zero:with_center(a)
|
||||
end
|
||||
end
|
||||
|
||||
--- Extend bound to include point
|
||||
-- @tparam bound3 a bound
|
||||
-- @tparam vec3 point to include
|
||||
-- @treturn bound3 Bound covering current min, current max and new point
|
||||
function bound3.extend(a, center)
|
||||
return bound3.new(a.min:component_min(center), a.max:component_max(center))
|
||||
end
|
||||
|
||||
--- Extend bound to entirety of other bound
|
||||
-- @tparam bound3 a bound
|
||||
-- @tparam bound3 bound to cover
|
||||
-- @treturn bound3 Bound covering current min and max of each bound in the pair
|
||||
function bound3.extend_bound(a, b)
|
||||
return a:extend(b.min):extend(b.max)
|
||||
end
|
||||
|
||||
--- Get size of bounding box as a vector
|
||||
-- @tparam bound3 a bound
|
||||
-- @treturn vec3 Vector spanning min to max points
|
||||
function bound3.size(a)
|
||||
return a.max - a.min
|
||||
end
|
||||
|
||||
--- Resize bounding box from minimum corner
|
||||
-- @tparam bound3 a bound
|
||||
-- @tparam vec3 new size
|
||||
-- @treturn bound3 resized bound
|
||||
function bound3.with_size(a, size)
|
||||
return bound3.new(a.min, a.min + size)
|
||||
end
|
||||
|
||||
--- Get half-size of bounding box as a vector. A more correct term for this is probably "apothem"
|
||||
-- @tparam bound3 a bound
|
||||
-- @treturn vec3 Vector spanning center to max point
|
||||
function bound3.radius(a)
|
||||
return a:size()/2
|
||||
end
|
||||
|
||||
--- Get center of bounding box
|
||||
-- @tparam bound3 a bound
|
||||
-- @treturn bound3 Point in center of bound
|
||||
function bound3.center(a)
|
||||
return (a.min + a.max)/2
|
||||
end
|
||||
|
||||
--- Move bounding box to new center
|
||||
-- @tparam bound3 a bound
|
||||
-- @tparam vec3 new center
|
||||
-- @treturn bound3 Bound with same size as input but different center
|
||||
function bound3.with_center(a, center)
|
||||
return bound3.offset(a, center - a:center())
|
||||
end
|
||||
|
||||
--- Resize bounding box from center
|
||||
-- @tparam bound3 a bound
|
||||
-- @tparam vec3 new size
|
||||
-- @treturn bound3 resized bound
|
||||
function bound3.with_size_centered(a, size)
|
||||
local center = a:center()
|
||||
local rad = size/2
|
||||
return bound3.new(center - rad, center + rad)
|
||||
end
|
||||
|
||||
--- Convert possibly-invalid bounding box to valid one
|
||||
-- @tparam bound3 a bound
|
||||
-- @treturn bound3 bound with all components corrected for min-max property
|
||||
function bound3.check(a)
|
||||
if a.min.x > a.max.x or a.min.y > a.max.y or a.min.z > a.max.z then
|
||||
return bound3.new(vec3.component_min(a.min, a.max), vec3.component_max(a.min, a.max))
|
||||
end
|
||||
return a
|
||||
end
|
||||
|
||||
--- Shrink bounding box with fixed margin
|
||||
-- @tparam bound3 a bound
|
||||
-- @tparam vec3 a margin
|
||||
-- @treturn bound3 bound with margin subtracted from all edges. May not be valid, consider calling check()
|
||||
function bound3.inset(a, v)
|
||||
return bound3.new(a.min + v, a.max - v)
|
||||
end
|
||||
|
||||
--- Expand bounding box with fixed margin
|
||||
-- @tparam bound3 a bound
|
||||
-- @tparam vec3 a margin
|
||||
-- @treturn bound3 bound with margin added to all edges. May not be valid, consider calling check()
|
||||
function bound3.outset(a, v)
|
||||
return bound3.new(a.min - v, a.max + v)
|
||||
end
|
||||
|
||||
--- Offset bounding box
|
||||
-- @tparam bound3 a bound
|
||||
-- @tparam vec3 offset
|
||||
-- @treturn bound3 bound with same size, but position moved by offset
|
||||
function bound3.offset(a, v)
|
||||
return bound3.new(a.min + v, a.max + v)
|
||||
end
|
||||
|
||||
--- Test if point in bound
|
||||
-- @tparam bound3 a bound
|
||||
-- @tparam vec3 point to test
|
||||
-- @treturn boolean true if point in bounding box
|
||||
function bound3.contains(a, v)
|
||||
return a.min.x <= v.x and a.min.y <= v.y and a.min.z <= v.z
|
||||
and a.max.x >= v.x and a.max.y >= v.y and a.max.z >= v.z
|
||||
end
|
||||
|
||||
-- Round all components of all vectors to nearest int (or other precision).
|
||||
-- @tparam vec3 a bound to round.
|
||||
-- @tparam precision Digits after the decimal (round number if unspecified)
|
||||
-- @treturn vec3 Rounded bound
|
||||
function bound3.round(a, precision)
|
||||
return bound3.new(a.min:round(precision), a.max:round(precision))
|
||||
end
|
||||
|
||||
--- Return a formatted string.
|
||||
-- @tparam bound3 a bound to be turned into a string
|
||||
-- @treturn string formatted
|
||||
function bound3.to_string(a)
|
||||
return string.format("(%s-%s)", a.min, a.max)
|
||||
end
|
||||
|
||||
bound3_mt.__index = bound3
|
||||
bound3_mt.__tostring = bound3.to_string
|
||||
|
||||
function bound3_mt.__call(_, a, b)
|
||||
return bound3.new(a, b)
|
||||
end
|
||||
|
||||
if status then
|
||||
xpcall(function() -- Allow this to silently fail; assume failure means someone messed with package.loaded
|
||||
ffi.metatype(new, bound3_mt)
|
||||
end, function() end)
|
||||
end
|
||||
|
||||
return setmetatable({}, bound3_mt)
|
557
libs/cpml/bvh.lua
Normal file
557
libs/cpml/bvh.lua
Normal file
@ -0,0 +1,557 @@
|
||||
-- https://github.com/benraziel/bvh-tree
|
||||
|
||||
--- BVH Tree
|
||||
-- @module bvh
|
||||
|
||||
local modules = (...):gsub('%.[^%.]+$', '') .. "."
|
||||
local intersect = require(modules .. "intersect")
|
||||
local vec3 = require(modules .. "vec3")
|
||||
local EPSILON = 1e-6
|
||||
local BVH = {}
|
||||
local BVHNode = {}
|
||||
local Node
|
||||
|
||||
BVH.__index = BVH
|
||||
BVHNode.__index = BVHNode
|
||||
|
||||
local function new(triangles, maxTrianglesPerNode)
|
||||
local tree = setmetatable({}, BVH)
|
||||
local trianglesArray = {}
|
||||
|
||||
for _, triangle in ipairs(triangles) do
|
||||
local p1 = triangle[1]
|
||||
local p2 = triangle[2]
|
||||
local p3 = triangle[3]
|
||||
|
||||
table.insert(trianglesArray, p1.x or p1[1])
|
||||
table.insert(trianglesArray, p1.y or p1[2])
|
||||
table.insert(trianglesArray, p1.z or p1[3])
|
||||
|
||||
table.insert(trianglesArray, p2.x or p2[1])
|
||||
table.insert(trianglesArray, p2.y or p2[2])
|
||||
table.insert(trianglesArray, p2.z or p2[3])
|
||||
|
||||
table.insert(trianglesArray, p3.x or p3[1])
|
||||
table.insert(trianglesArray, p3.y or p3[2])
|
||||
table.insert(trianglesArray, p3.z or p3[3])
|
||||
end
|
||||
|
||||
tree._trianglesArray = trianglesArray
|
||||
tree._maxTrianglesPerNode = maxTrianglesPerNode or 10
|
||||
tree._bboxArray = tree.calcBoundingBoxes(trianglesArray)
|
||||
|
||||
-- clone a helper array
|
||||
tree._bboxHelper = {}
|
||||
for _, bbox in ipairs(tree._bboxArray) do
|
||||
table.insert(tree._bboxHelper, bbox)
|
||||
end
|
||||
|
||||
-- create the root node, add all the triangles to it
|
||||
local triangleCount = #triangles
|
||||
local extents = tree:calcExtents(1, triangleCount, EPSILON)
|
||||
tree._rootNode = Node(extents[1], extents[2], 1, triangleCount, 1)
|
||||
|
||||
tree._nodes_to_split = { tree._rootNode }
|
||||
while #tree._nodes_to_split > 0 do
|
||||
local node = table.remove(tree._nodes_to_split)
|
||||
tree:splitNode(node)
|
||||
end
|
||||
return tree
|
||||
end
|
||||
|
||||
function BVH:intersectAABB(aabb)
|
||||
local nodesToIntersect = { self._rootNode }
|
||||
local trianglesInIntersectingNodes = {} -- a list of nodes that intersect the ray (according to their bounding box)
|
||||
local intersectingTriangles = {}
|
||||
|
||||
-- go over the BVH tree, and extract the list of triangles that lie in nodes that intersect the box.
|
||||
-- note: these triangles may not intersect the box themselves
|
||||
while #nodesToIntersect > 0 do
|
||||
local node = table.remove(nodesToIntersect)
|
||||
|
||||
local node_aabb = {
|
||||
min = node._extentsMin,
|
||||
max = node._extentsMax
|
||||
}
|
||||
|
||||
if intersect.aabb_aabb(aabb, node_aabb) then
|
||||
if node._node0 then
|
||||
table.insert(nodesToIntersect, node._node0)
|
||||
end
|
||||
|
||||
if node._node1 then
|
||||
table.insert(nodesToIntersect, node._node1)
|
||||
end
|
||||
|
||||
for i=node._startIndex, node._endIndex do
|
||||
table.insert(trianglesInIntersectingNodes, self._bboxArray[1+(i-1)*7])
|
||||
end
|
||||
end
|
||||
end
|
||||
|
||||
-- insert all node triangles, don't bother being more specific yet.
|
||||
local triangle = { vec3(), vec3(), vec3() }
|
||||
|
||||
for i=1, #trianglesInIntersectingNodes do
|
||||
local triIndex = trianglesInIntersectingNodes[i]
|
||||
|
||||
-- print(triIndex, #self._trianglesArray)
|
||||
triangle[1].x = self._trianglesArray[1+(triIndex-1)*9]
|
||||
triangle[1].y = self._trianglesArray[1+(triIndex-1)*9+1]
|
||||
triangle[1].z = self._trianglesArray[1+(triIndex-1)*9+2]
|
||||
triangle[2].x = self._trianglesArray[1+(triIndex-1)*9+3]
|
||||
triangle[2].y = self._trianglesArray[1+(triIndex-1)*9+4]
|
||||
triangle[2].z = self._trianglesArray[1+(triIndex-1)*9+5]
|
||||
triangle[3].x = self._trianglesArray[1+(triIndex-1)*9+6]
|
||||
triangle[3].y = self._trianglesArray[1+(triIndex-1)*9+7]
|
||||
triangle[3].z = self._trianglesArray[1+(triIndex-1)*9+8]
|
||||
|
||||
table.insert(intersectingTriangles, {
|
||||
triangle = { triangle[1]:clone(), triangle[2]:clone(), triangle[3]:clone() },
|
||||
triangleIndex = triIndex
|
||||
})
|
||||
end
|
||||
|
||||
return intersectingTriangles
|
||||
end
|
||||
|
||||
function BVH:intersectRay(rayOrigin, rayDirection, backfaceCulling)
|
||||
local nodesToIntersect = { self._rootNode }
|
||||
local trianglesInIntersectingNodes = {} -- a list of nodes that intersect the ray (according to their bounding box)
|
||||
local intersectingTriangles = {}
|
||||
|
||||
local invRayDirection = vec3(
|
||||
1 / rayDirection.x,
|
||||
1 / rayDirection.y,
|
||||
1 / rayDirection.z
|
||||
)
|
||||
|
||||
-- go over the BVH tree, and extract the list of triangles that lie in nodes that intersect the ray.
|
||||
-- note: these triangles may not intersect the ray themselves
|
||||
while #nodesToIntersect > 0 do
|
||||
local node = table.remove(nodesToIntersect)
|
||||
|
||||
if BVH.intersectNodeBox(rayOrigin, invRayDirection, node) then
|
||||
if node._node0 then
|
||||
table.insert(nodesToIntersect, node._node0)
|
||||
end
|
||||
|
||||
if node._node1 then
|
||||
table.insert(nodesToIntersect, node._node1)
|
||||
end
|
||||
|
||||
for i=node._startIndex, node._endIndex do
|
||||
table.insert(trianglesInIntersectingNodes, self._bboxArray[1+(i-1)*7])
|
||||
end
|
||||
end
|
||||
end
|
||||
|
||||
-- go over the list of candidate triangles, and check each of them using ray triangle intersection
|
||||
local triangle = { vec3(), vec3(), vec3() }
|
||||
local ray = {
|
||||
position = vec3(rayOrigin.x, rayOrigin.y, rayOrigin.z),
|
||||
direction = vec3(rayDirection.x, rayDirection.y, rayDirection.z)
|
||||
}
|
||||
|
||||
for i=1, #trianglesInIntersectingNodes do
|
||||
local triIndex = trianglesInIntersectingNodes[i]
|
||||
|
||||
-- print(triIndex, #self._trianglesArray)
|
||||
triangle[1].x = self._trianglesArray[1+(triIndex-1)*9]
|
||||
triangle[1].y = self._trianglesArray[1+(triIndex-1)*9+1]
|
||||
triangle[1].z = self._trianglesArray[1+(triIndex-1)*9+2]
|
||||
triangle[2].x = self._trianglesArray[1+(triIndex-1)*9+3]
|
||||
triangle[2].y = self._trianglesArray[1+(triIndex-1)*9+4]
|
||||
triangle[2].z = self._trianglesArray[1+(triIndex-1)*9+5]
|
||||
triangle[3].x = self._trianglesArray[1+(triIndex-1)*9+6]
|
||||
triangle[3].y = self._trianglesArray[1+(triIndex-1)*9+7]
|
||||
triangle[3].z = self._trianglesArray[1+(triIndex-1)*9+8]
|
||||
|
||||
local intersectionPoint, intersectionDistance = intersect.ray_triangle(ray, triangle, backfaceCulling)
|
||||
|
||||
if intersectionPoint then
|
||||
table.insert(intersectingTriangles, {
|
||||
triangle = { triangle[1]:clone(), triangle[2]:clone(), triangle[3]:clone() },
|
||||
triangleIndex = triIndex,
|
||||
intersectionPoint = intersectionPoint,
|
||||
intersectionDistance = intersectionDistance
|
||||
})
|
||||
end
|
||||
end
|
||||
|
||||
return intersectingTriangles
|
||||
end
|
||||
|
||||
function BVH.calcBoundingBoxes(trianglesArray)
|
||||
local p1x, p1y, p1z
|
||||
local p2x, p2y, p2z
|
||||
local p3x, p3y, p3z
|
||||
local minX, minY, minZ
|
||||
local maxX, maxY, maxZ
|
||||
|
||||
local bboxArray = {}
|
||||
|
||||
for i=1, #trianglesArray / 9 do
|
||||
p1x = trianglesArray[1+(i-1)*9]
|
||||
p1y = trianglesArray[1+(i-1)*9+1]
|
||||
p1z = trianglesArray[1+(i-1)*9+2]
|
||||
p2x = trianglesArray[1+(i-1)*9+3]
|
||||
p2y = trianglesArray[1+(i-1)*9+4]
|
||||
p2z = trianglesArray[1+(i-1)*9+5]
|
||||
p3x = trianglesArray[1+(i-1)*9+6]
|
||||
p3y = trianglesArray[1+(i-1)*9+7]
|
||||
p3z = trianglesArray[1+(i-1)*9+8]
|
||||
|
||||
minX = math.min(p1x, p2x, p3x)
|
||||
minY = math.min(p1y, p2y, p3y)
|
||||
minZ = math.min(p1z, p2z, p3z)
|
||||
maxX = math.max(p1x, p2x, p3x)
|
||||
maxY = math.max(p1y, p2y, p3y)
|
||||
maxZ = math.max(p1z, p2z, p3z)
|
||||
|
||||
BVH.setBox(bboxArray, i, i, minX, minY, minZ, maxX, maxY, maxZ)
|
||||
end
|
||||
|
||||
return bboxArray
|
||||
end
|
||||
|
||||
function BVH:calcExtents(startIndex, endIndex, expandBy)
|
||||
expandBy = expandBy or 0
|
||||
|
||||
if startIndex > endIndex then
|
||||
return { vec3(), vec3() }
|
||||
end
|
||||
|
||||
local minX = math.huge
|
||||
local minY = math.huge
|
||||
local minZ = math.huge
|
||||
local maxX = -math.huge
|
||||
local maxY = -math.huge
|
||||
local maxZ = -math.huge
|
||||
|
||||
for i=startIndex, endIndex do
|
||||
minX = math.min(self._bboxArray[1+(i-1)*7+1], minX)
|
||||
minY = math.min(self._bboxArray[1+(i-1)*7+2], minY)
|
||||
minZ = math.min(self._bboxArray[1+(i-1)*7+3], minZ)
|
||||
maxX = math.max(self._bboxArray[1+(i-1)*7+4], maxX)
|
||||
maxY = math.max(self._bboxArray[1+(i-1)*7+5], maxY)
|
||||
maxZ = math.max(self._bboxArray[1+(i-1)*7+6], maxZ)
|
||||
end
|
||||
|
||||
return {
|
||||
vec3(minX - expandBy, minY - expandBy, minZ - expandBy),
|
||||
vec3(maxX + expandBy, maxY + expandBy, maxZ + expandBy)
|
||||
}
|
||||
end
|
||||
|
||||
function BVH:splitNode(node)
|
||||
local num_elements = node:elementCount()
|
||||
if (num_elements <= self._maxTrianglesPerNode) or (num_elements <= 0) then
|
||||
return
|
||||
end
|
||||
|
||||
local startIndex = node._startIndex
|
||||
local endIndex = node._endIndex
|
||||
|
||||
local leftNode = { {},{},{} }
|
||||
local rightNode = { {},{},{} }
|
||||
local extentCenters = { node:centerX(), node:centerY(), node:centerZ() }
|
||||
|
||||
local extentsLength = {
|
||||
node._extentsMax.x - node._extentsMin.x,
|
||||
node._extentsMax.y - node._extentsMin.y,
|
||||
node._extentsMax.z - node._extentsMin.z
|
||||
}
|
||||
|
||||
local objectCenter = {}
|
||||
for i=startIndex, endIndex do
|
||||
objectCenter[1] = (self._bboxArray[1+(i-1)*7+1] + self._bboxArray[1+(i-1)*7+4]) * 0.5 -- center = (min + max) / 2
|
||||
objectCenter[2] = (self._bboxArray[1+(i-1)*7+2] + self._bboxArray[1+(i-1)*7+5]) * 0.5 -- center = (min + max) / 2
|
||||
objectCenter[3] = (self._bboxArray[1+(i-1)*7+3] + self._bboxArray[1+(i-1)*7+6]) * 0.5 -- center = (min + max) / 2
|
||||
|
||||
for j=1, 3 do
|
||||
if objectCenter[j] < extentCenters[j] then
|
||||
table.insert(leftNode[j], i)
|
||||
else
|
||||
table.insert(rightNode[j], i)
|
||||
end
|
||||
end
|
||||
end
|
||||
|
||||
-- check if we couldn't split the node by any of the axes (x, y or z). halt
|
||||
-- here, dont try to split any more (cause it will always fail, and we'll
|
||||
-- enter an infinite loop
|
||||
local splitFailed = {
|
||||
#leftNode[1] == 0 or #rightNode[1] == 0,
|
||||
#leftNode[2] == 0 or #rightNode[2] == 0,
|
||||
#leftNode[3] == 0 or #rightNode[3] == 0
|
||||
}
|
||||
|
||||
if splitFailed[1] and splitFailed[2] and splitFailed[3] then
|
||||
return
|
||||
end
|
||||
|
||||
-- choose the longest split axis. if we can't split by it, choose next best one.
|
||||
local splitOrder = { 1, 2, 3 }
|
||||
table.sort(splitOrder, function(a, b)
|
||||
return extentsLength[a] > extentsLength[b]
|
||||
end)
|
||||
|
||||
local leftElements
|
||||
local rightElements
|
||||
|
||||
for i=1, 3 do
|
||||
local candidateIndex = splitOrder[i]
|
||||
if not splitFailed[candidateIndex] then
|
||||
leftElements = leftNode[candidateIndex]
|
||||
rightElements = rightNode[candidateIndex]
|
||||
break
|
||||
end
|
||||
end
|
||||
|
||||
-- sort the elements in range (startIndex, endIndex) according to which node they should be at
|
||||
local node0Start = startIndex
|
||||
local node1Start = node0Start + #leftElements
|
||||
local node0End = node1Start - 1
|
||||
local node1End = endIndex
|
||||
local currElement
|
||||
|
||||
local helperPos = node._startIndex
|
||||
local concatenatedElements = {}
|
||||
|
||||
for _, element in ipairs(leftElements) do
|
||||
table.insert(concatenatedElements, element)
|
||||
end
|
||||
|
||||
for _, element in ipairs(rightElements) do
|
||||
table.insert(concatenatedElements, element)
|
||||
end
|
||||
|
||||
-- print(#leftElements, #rightElements, #concatenatedElements)
|
||||
|
||||
for i=1, #concatenatedElements do
|
||||
currElement = concatenatedElements[i]
|
||||
BVH.copyBox(self._bboxArray, currElement, self._bboxHelper, helperPos)
|
||||
helperPos = helperPos + 1
|
||||
end
|
||||
|
||||
-- copy results back to main array
|
||||
for i=1+(node._startIndex-1)*7, node._endIndex*7 do
|
||||
self._bboxArray[i] = self._bboxHelper[i]
|
||||
end
|
||||
|
||||
-- create 2 new nodes for the node we just split, and add links to them from the parent node
|
||||
local node0Extents = self:calcExtents(node0Start, node0End, EPSILON)
|
||||
local node1Extents = self:calcExtents(node1Start, node1End, EPSILON)
|
||||
|
||||
local node0 = Node(node0Extents[1], node0Extents[2], node0Start, node0End, node._level + 1)
|
||||
local node1 = Node(node1Extents[1], node1Extents[2], node1Start, node1End, node._level + 1)
|
||||
|
||||
node._node0 = node0
|
||||
node._node1 = node1
|
||||
node:clearShapes()
|
||||
|
||||
-- add new nodes to the split queue
|
||||
table.insert(self._nodes_to_split, node0)
|
||||
table.insert(self._nodes_to_split, node1)
|
||||
end
|
||||
|
||||
function BVH._calcTValues(minVal, maxVal, rayOriginCoord, invdir)
|
||||
local res = { min=0, max=0 }
|
||||
|
||||
if invdir >= 0 then
|
||||
res.min = ( minVal - rayOriginCoord ) * invdir
|
||||
res.max = ( maxVal - rayOriginCoord ) * invdir
|
||||
else
|
||||
res.min = ( maxVal - rayOriginCoord ) * invdir
|
||||
res.max = ( minVal - rayOriginCoord ) * invdir
|
||||
end
|
||||
|
||||
return res
|
||||
end
|
||||
|
||||
function BVH.intersectNodeBox(rayOrigin, invRayDirection, node)
|
||||
local t = BVH._calcTValues(node._extentsMin.x, node._extentsMax.x, rayOrigin.x, invRayDirection.x)
|
||||
local ty = BVH._calcTValues(node._extentsMin.y, node._extentsMax.y, rayOrigin.y, invRayDirection.y)
|
||||
|
||||
if t.min > ty.max or ty.min > t.max then
|
||||
return false
|
||||
end
|
||||
|
||||
-- These lines also handle the case where tmin or tmax is NaN
|
||||
-- (result of 0 * Infinity). x !== x returns true if x is NaN
|
||||
if ty.min > t.min or t.min ~= t.min then
|
||||
t.min = ty.min
|
||||
end
|
||||
|
||||
if ty.max < t.max or t.max ~= t.max then
|
||||
t.max = ty.max
|
||||
end
|
||||
|
||||
local tz = BVH._calcTValues(node._extentsMin.z, node._extentsMax.z, rayOrigin.z, invRayDirection.z)
|
||||
|
||||
if t.min > tz.max or tz.min > t.max then
|
||||
return false
|
||||
end
|
||||
|
||||
if tz.min > t.min or t.min ~= t.min then
|
||||
t.min = tz.min
|
||||
end
|
||||
|
||||
if tz.max < t.max or t.max ~= t.max then
|
||||
t.max = tz.max
|
||||
end
|
||||
|
||||
--return point closest to the ray (positive side)
|
||||
if t.max < 0 then
|
||||
return false
|
||||
end
|
||||
|
||||
return true
|
||||
end
|
||||
|
||||
function BVH.setBox(bboxArray, pos, triangleId, minX, minY, minZ, maxX, maxY, maxZ)
|
||||
bboxArray[1+(pos-1)*7] = triangleId
|
||||
bboxArray[1+(pos-1)*7+1] = minX
|
||||
bboxArray[1+(pos-1)*7+2] = minY
|
||||
bboxArray[1+(pos-1)*7+3] = minZ
|
||||
bboxArray[1+(pos-1)*7+4] = maxX
|
||||
bboxArray[1+(pos-1)*7+5] = maxY
|
||||
bboxArray[1+(pos-1)*7+6] = maxZ
|
||||
end
|
||||
|
||||
function BVH.copyBox(sourceArray, sourcePos, destArray, destPos)
|
||||
destArray[1+(destPos-1)*7] = sourceArray[1+(sourcePos-1)*7]
|
||||
destArray[1+(destPos-1)*7+1] = sourceArray[1+(sourcePos-1)*7+1]
|
||||
destArray[1+(destPos-1)*7+2] = sourceArray[1+(sourcePos-1)*7+2]
|
||||
destArray[1+(destPos-1)*7+3] = sourceArray[1+(sourcePos-1)*7+3]
|
||||
destArray[1+(destPos-1)*7+4] = sourceArray[1+(sourcePos-1)*7+4]
|
||||
destArray[1+(destPos-1)*7+5] = sourceArray[1+(sourcePos-1)*7+5]
|
||||
destArray[1+(destPos-1)*7+6] = sourceArray[1+(sourcePos-1)*7+6]
|
||||
end
|
||||
|
||||
function BVH.getBox(bboxArray, pos, outputBox)
|
||||
outputBox.triangleId = bboxArray[1+(pos-1)*7]
|
||||
outputBox.minX = bboxArray[1+(pos-1)*7+1]
|
||||
outputBox.minY = bboxArray[1+(pos-1)*7+2]
|
||||
outputBox.minZ = bboxArray[1+(pos-1)*7+3]
|
||||
outputBox.maxX = bboxArray[1+(pos-1)*7+4]
|
||||
outputBox.maxY = bboxArray[1+(pos-1)*7+5]
|
||||
outputBox.maxZ = bboxArray[1+(pos-1)*7+6]
|
||||
end
|
||||
|
||||
local function new_node(extentsMin, extentsMax, startIndex, endIndex, level)
|
||||
return setmetatable({
|
||||
_extentsMin = extentsMin,
|
||||
_extentsMax = extentsMax,
|
||||
_startIndex = startIndex,
|
||||
_endIndex = endIndex,
|
||||
_level = level
|
||||
--_node0 = nil
|
||||
--_node1 = nil
|
||||
}, BVHNode)
|
||||
end
|
||||
|
||||
function BVHNode:elementCount()
|
||||
return (self._endIndex + 1) - self._startIndex
|
||||
end
|
||||
|
||||
function BVHNode:centerX()
|
||||
return (self._extentsMin.x + self._extentsMax.x) * 0.5
|
||||
end
|
||||
|
||||
function BVHNode:centerY()
|
||||
return (self._extentsMin.y + self._extentsMax.y) * 0.5
|
||||
end
|
||||
|
||||
function BVHNode:centerZ()
|
||||
return (self._extentsMin.z + self._extentsMax.z) * 0.5
|
||||
end
|
||||
|
||||
function BVHNode:clearShapes()
|
||||
self._startIndex = 0
|
||||
self._endIndex = -1
|
||||
end
|
||||
|
||||
function BVHNode.ngSphereRadius(extentsMin, extentsMax)
|
||||
local centerX = (extentsMin.x + extentsMax.x) * 0.5
|
||||
local centerY = (extentsMin.y + extentsMax.y) * 0.5
|
||||
local centerZ = (extentsMin.z + extentsMax.z) * 0.5
|
||||
|
||||
local extentsMinDistSqr =
|
||||
(centerX - extentsMin.x) * (centerX - extentsMin.x) +
|
||||
(centerY - extentsMin.y) * (centerY - extentsMin.y) +
|
||||
(centerZ - extentsMin.z) * (centerZ - extentsMin.z)
|
||||
|
||||
local extentsMaxDistSqr =
|
||||
(centerX - extentsMax.x) * (centerX - extentsMax.x) +
|
||||
(centerY - extentsMax.y) * (centerY - extentsMax.y) +
|
||||
(centerZ - extentsMax.z) * (centerZ - extentsMax.z)
|
||||
|
||||
return math.sqrt(math.max(extentsMinDistSqr, extentsMaxDistSqr))
|
||||
end
|
||||
|
||||
--[[
|
||||
|
||||
--- Draws node boundaries visually for debugging.
|
||||
-- @param cube Cube model to draw
|
||||
-- @param depth Used for recurcive calls to self method
|
||||
function OctreeNode:draw_bounds(cube, depth)
|
||||
depth = depth or 0
|
||||
local tint = depth / 7 -- Will eventually get values > 1. Color rounds to 1 automatically
|
||||
|
||||
love.graphics.setColor(tint * 255, 0, (1 - tint) * 255)
|
||||
local m = mat4()
|
||||
:translate(self.center)
|
||||
:scale(vec3(self.adjLength, self.adjLength, self.adjLength))
|
||||
|
||||
love.graphics.updateMatrix("transform", m)
|
||||
love.graphics.setWireframe(true)
|
||||
love.graphics.draw(cube)
|
||||
love.graphics.setWireframe(false)
|
||||
|
||||
for _, child in ipairs(self.children) do
|
||||
child:draw_bounds(cube, depth + 1)
|
||||
end
|
||||
|
||||
love.graphics.setColor(255, 255, 255)
|
||||
end
|
||||
|
||||
--- Draws the bounds of all objects in the tree visually for debugging.
|
||||
-- @param cube Cube model to draw
|
||||
-- @param filter a function returning true or false to determine visibility.
|
||||
function OctreeNode:draw_objects(cube, filter)
|
||||
local tint = self.baseLength / 20
|
||||
love.graphics.setColor(0, (1 - tint) * 255, tint * 255, 63)
|
||||
|
||||
for _, object in ipairs(self.objects) do
|
||||
if filter and filter(object.data) or not filter then
|
||||
local m = mat4()
|
||||
:translate(object.bounds.center)
|
||||
:scale(object.bounds.size)
|
||||
|
||||
love.graphics.updateMatrix("transform", m)
|
||||
love.graphics.draw(cube)
|
||||
end
|
||||
end
|
||||
|
||||
for _, child in ipairs(self.children) do
|
||||
child:draw_objects(cube, filter)
|
||||
end
|
||||
|
||||
love.graphics.setColor(255, 255, 255)
|
||||
end
|
||||
|
||||
--]]
|
||||
|
||||
Node = setmetatable({
|
||||
new = new_node
|
||||
}, {
|
||||
__call = function(_, ...) return new_node(...) end
|
||||
})
|
||||
|
||||
return setmetatable({
|
||||
new = new
|
||||
}, {
|
||||
__call = function(_, ...) return new(...) end
|
||||
})
|
400
libs/cpml/color.lua
Normal file
400
libs/cpml/color.lua
Normal file
@ -0,0 +1,400 @@
|
||||
--- Color utilities
|
||||
-- @module color
|
||||
|
||||
local modules = (...):gsub('%.[^%.]+$', '') .. "."
|
||||
local constants = require(modules .. "constants")
|
||||
local utils = require(modules .. "utils")
|
||||
local precond = require(modules .. "_private_precond")
|
||||
local color = {}
|
||||
local color_mt = {}
|
||||
|
||||
local function new(r, g, b, a)
|
||||
local c = { r, g, b, a }
|
||||
c._c = c
|
||||
return setmetatable(c, color_mt)
|
||||
end
|
||||
|
||||
-- HSV utilities (adapted from http://www.cs.rit.edu/~ncs/color/t_convert.html)
|
||||
-- hsv_to_color(hsv)
|
||||
-- Converts a set of HSV values to a color. hsv is a table.
|
||||
-- See also: hsv(h, s, v)
|
||||
local function hsv_to_color(hsv)
|
||||
local i
|
||||
local f, q, p, t
|
||||
local h, s, v
|
||||
local a = hsv[4] or 1
|
||||
s = hsv[2]
|
||||
v = hsv[3]
|
||||
|
||||
if s == 0 then
|
||||
return new(v, v, v, a)
|
||||
end
|
||||
|
||||
h = hsv[1] * 6 -- sector 0 to 5
|
||||
|
||||
i = math.floor(h)
|
||||
f = h - i -- factorial part of h
|
||||
p = v * (1-s)
|
||||
q = v * (1-s*f)
|
||||
t = v * (1-s*(1-f))
|
||||
|
||||
if i == 0 then return new(v, t, p, a)
|
||||
elseif i == 1 then return new(q, v, p, a)
|
||||
elseif i == 2 then return new(p, v, t, a)
|
||||
elseif i == 3 then return new(p, q, v, a)
|
||||
elseif i == 4 then return new(t, p, v, a)
|
||||
else return new(v, p, q, a)
|
||||
end
|
||||
end
|
||||
|
||||
-- color_to_hsv(c)
|
||||
-- Takes in a normal color and returns a table with the HSV values.
|
||||
local function color_to_hsv(c)
|
||||
local r = c[1]
|
||||
local g = c[2]
|
||||
local b = c[3]
|
||||
local a = c[4] or 1
|
||||
local h, s, v
|
||||
|
||||
local min = math.min(r, g, b)
|
||||
local max = math.max(r, g, b)
|
||||
v = max
|
||||
|
||||
local delta = max - min
|
||||
|
||||
-- black, nothing else is really possible here.
|
||||
if min == 0 and max == 0 then
|
||||
return { 0, 0, 0, a }
|
||||
end
|
||||
|
||||
if max ~= 0 then
|
||||
s = delta / max
|
||||
else
|
||||
-- r = g = b = 0 s = 0, v is undefined
|
||||
s = 0
|
||||
h = -1
|
||||
return { h, s, v, 1 }
|
||||
end
|
||||
|
||||
-- Prevent division by zero.
|
||||
if delta == 0 then
|
||||
delta = constants.DBL_EPSILON
|
||||
end
|
||||
|
||||
if r == max then
|
||||
h = ( g - b ) / delta -- yellow/magenta
|
||||
elseif g == max then
|
||||
h = 2 + ( b - r ) / delta -- cyan/yellow
|
||||
else
|
||||
h = 4 + ( r - g ) / delta -- magenta/cyan
|
||||
end
|
||||
|
||||
h = h / 6 -- normalize from segment 0..5
|
||||
|
||||
if h < 0 then
|
||||
h = h + 1
|
||||
end
|
||||
|
||||
return { h, s, v, a }
|
||||
end
|
||||
|
||||
--- The public constructor.
|
||||
-- @param x Can be of three types: </br>
|
||||
-- number red component 0-1
|
||||
-- table {r, g, b, a}
|
||||
-- nil for {0,0,0,0}
|
||||
-- @tparam number g Green component 0-1
|
||||
-- @tparam number b Blue component 0-1
|
||||
-- @tparam number a Alpha component 0-1
|
||||
-- @treturn color out
|
||||
function color.new(r, g, b, a)
|
||||
-- number, number, number, number
|
||||
if r and g and b and a then
|
||||
precond.typeof(r, "number", "new: Wrong argument type for r")
|
||||
precond.typeof(g, "number", "new: Wrong argument type for g")
|
||||
precond.typeof(b, "number", "new: Wrong argument type for b")
|
||||
precond.typeof(a, "number", "new: Wrong argument type for a")
|
||||
|
||||
return new(r, g, b, a)
|
||||
|
||||
-- {r, g, b, a}
|
||||
elseif type(r) == "table" then
|
||||
local rr, gg, bb, aa = r[1], r[2], r[3], r[4]
|
||||
precond.typeof(rr, "number", "new: Wrong argument type for r")
|
||||
precond.typeof(gg, "number", "new: Wrong argument type for g")
|
||||
precond.typeof(bb, "number", "new: Wrong argument type for b")
|
||||
precond.typeof(aa, "number", "new: Wrong argument type for a")
|
||||
|
||||
return new(rr, gg, bb, aa)
|
||||
end
|
||||
|
||||
return new(0, 0, 0, 0)
|
||||
end
|
||||
|
||||
--- Convert hue,saturation,value table to color object.
|
||||
-- @tparam table hsva {hue 0-1, saturation 0-1, value 0-1, alpha 0-1}
|
||||
-- @treturn color out
|
||||
color.hsv_to_color_table = hsv_to_color
|
||||
|
||||
--- Convert color to hue,saturation,value table
|
||||
-- @tparam color in
|
||||
-- @treturn table hsva {hue 0-1, saturation 0-1, value 0-1, alpha 0-1}
|
||||
color.color_to_hsv_table = color_to_hsv
|
||||
|
||||
--- Convert hue,saturation,value to color object.
|
||||
-- @tparam number h hue 0-1
|
||||
-- @tparam number s saturation 0-1
|
||||
-- @tparam number v value 0-1
|
||||
-- @treturn color out
|
||||
function color.from_hsv(h, s, v)
|
||||
return hsv_to_color { h, s, v }
|
||||
end
|
||||
|
||||
--- Convert hue,saturation,value to color object.
|
||||
-- @tparam number h hue 0-1
|
||||
-- @tparam number s saturation 0-1
|
||||
-- @tparam number v value 0-1
|
||||
-- @tparam number a alpha 0-1
|
||||
-- @treturn color out
|
||||
function color.from_hsva(h, s, v, a)
|
||||
return hsv_to_color { h, s, v, a }
|
||||
end
|
||||
|
||||
--- Invert a color.
|
||||
-- @tparam color to invert
|
||||
-- @treturn color out
|
||||
function color.invert(c)
|
||||
return new(1 - c[1], 1 - c[2], 1 - c[3], c[4])
|
||||
end
|
||||
|
||||
--- Lighten a color by a component-wise fixed amount (alpha unchanged)
|
||||
-- @tparam color to lighten
|
||||
-- @tparam number amount to increase each component by, 0-1 scale
|
||||
-- @treturn color out
|
||||
function color.lighten(c, v)
|
||||
return new(
|
||||
utils.clamp(c[1] + v, 0, 1),
|
||||
utils.clamp(c[2] + v, 0, 1),
|
||||
utils.clamp(c[3] + v, 0, 1),
|
||||
c[4]
|
||||
)
|
||||
end
|
||||
|
||||
--- Interpolate between two colors.
|
||||
-- @tparam color at start
|
||||
-- @tparam color at end
|
||||
-- @tparam number s in 0-1 progress between the two colors
|
||||
-- @treturn color out
|
||||
function color.lerp(a, b, s)
|
||||
return a + s * (b - a)
|
||||
end
|
||||
|
||||
--- Unpack a color into individual components in 0-1.
|
||||
-- @tparam color to unpack
|
||||
-- @treturn number r in 0-1
|
||||
-- @treturn number g in 0-1
|
||||
-- @treturn number b in 0-1
|
||||
-- @treturn number a in 0-1
|
||||
function color.unpack(c)
|
||||
return c[1], c[2], c[3], c[4]
|
||||
end
|
||||
|
||||
--- Unpack a color into individual components in 0-255.
|
||||
-- @tparam color to unpack
|
||||
-- @treturn number r in 0-255
|
||||
-- @treturn number g in 0-255
|
||||
-- @treturn number b in 0-255
|
||||
-- @treturn number a in 0-255
|
||||
function color.as_255(c)
|
||||
return c[1] * 255, c[2] * 255, c[3] * 255, c[4] * 255
|
||||
end
|
||||
|
||||
--- Darken a color by a component-wise fixed amount (alpha unchanged)
|
||||
-- @tparam color to darken
|
||||
-- @tparam number amount to decrease each component by, 0-1 scale
|
||||
-- @treturn color out
|
||||
function color.darken(c, v)
|
||||
return new(
|
||||
utils.clamp(c[1] - v, 0, 1),
|
||||
utils.clamp(c[2] - v, 0, 1),
|
||||
utils.clamp(c[3] - v, 0, 1),
|
||||
c[4]
|
||||
)
|
||||
end
|
||||
|
||||
--- Multiply a color's components by a value (alpha unchanged)
|
||||
-- @tparam color to multiply
|
||||
-- @tparam number to multiply each component by
|
||||
-- @treturn color out
|
||||
function color.multiply(c, v)
|
||||
local t = color.new()
|
||||
for i = 1, 3 do
|
||||
t[i] = c[i] * v
|
||||
end
|
||||
|
||||
t[4] = c[4]
|
||||
return t
|
||||
end
|
||||
|
||||
-- directly set alpha channel
|
||||
-- @tparam color to alter
|
||||
-- @tparam number new alpha 0-1
|
||||
-- @treturn color out
|
||||
function color.alpha(c, v)
|
||||
local t = color.new()
|
||||
for i = 1, 3 do
|
||||
t[i] = c[i]
|
||||
end
|
||||
|
||||
t[4] = v
|
||||
return t
|
||||
end
|
||||
|
||||
--- Multiply a color's alpha by a value
|
||||
-- @tparam color to multiply
|
||||
-- @tparam number to multiply alpha by
|
||||
-- @treturn color out
|
||||
function color.opacity(c, v)
|
||||
local t = color.new()
|
||||
for i = 1, 3 do
|
||||
t[i] = c[i]
|
||||
end
|
||||
|
||||
t[4] = c[4] * v
|
||||
return t
|
||||
end
|
||||
|
||||
--- Set a color's hue (saturation, value, alpha unchanged)
|
||||
-- @tparam color to alter
|
||||
-- @tparam hue to set 0-1
|
||||
-- @treturn color out
|
||||
function color.hue(col, hue)
|
||||
local c = color_to_hsv(col)
|
||||
c[1] = (hue + 1) % 1
|
||||
return hsv_to_color(c)
|
||||
end
|
||||
|
||||
--- Set a color's saturation (hue, value, alpha unchanged)
|
||||
-- @tparam color to alter
|
||||
-- @tparam saturation to set 0-1
|
||||
-- @treturn color out
|
||||
function color.saturation(col, percent)
|
||||
local c = color_to_hsv(col)
|
||||
c[2] = utils.clamp(percent, 0, 1)
|
||||
return hsv_to_color(c)
|
||||
end
|
||||
|
||||
--- Set a color's value (saturation, hue, alpha unchanged)
|
||||
-- @tparam color to alter
|
||||
-- @tparam value to set 0-1
|
||||
-- @treturn color out
|
||||
function color.value(col, percent)
|
||||
local c = color_to_hsv(col)
|
||||
c[3] = utils.clamp(percent, 0, 1)
|
||||
return hsv_to_color(c)
|
||||
end
|
||||
|
||||
-- https://en.wikipedia.org/wiki/SRGB#From_sRGB_to_CIE_XYZ
|
||||
function color.gamma_to_linear(r, g, b, a)
|
||||
local function convert(c)
|
||||
if c > 1.0 then
|
||||
return 1.0
|
||||
elseif c < 0.0 then
|
||||
return 0.0
|
||||
elseif c <= 0.04045 then
|
||||
return c / 12.92
|
||||
else
|
||||
return math.pow((c + 0.055) / 1.055, 2.4)
|
||||
end
|
||||
end
|
||||
|
||||
if type(r) == "table" then
|
||||
local c = {}
|
||||
for i = 1, 3 do
|
||||
c[i] = convert(r[i])
|
||||
end
|
||||
|
||||
c[4] = r[4]
|
||||
return c
|
||||
else
|
||||
return convert(r), convert(g), convert(b), a or 1
|
||||
end
|
||||
end
|
||||
|
||||
-- https://en.wikipedia.org/wiki/SRGB#From_CIE_XYZ_to_sRGB
|
||||
function color.linear_to_gamma(r, g, b, a)
|
||||
local function convert(c)
|
||||
if c > 1.0 then
|
||||
return 1.0
|
||||
elseif c < 0.0 then
|
||||
return 0.0
|
||||
elseif c < 0.0031308 then
|
||||
return c * 12.92
|
||||
else
|
||||
return 1.055 * math.pow(c, 0.41666) - 0.055
|
||||
end
|
||||
end
|
||||
|
||||
if type(r) == "table" then
|
||||
local c = {}
|
||||
for i = 1, 3 do
|
||||
c[i] = convert(r[i])
|
||||
end
|
||||
|
||||
c[4] = r[4]
|
||||
return c
|
||||
else
|
||||
return convert(r), convert(g), convert(b), a or 1
|
||||
end
|
||||
end
|
||||
|
||||
--- Check if color is valid
|
||||
-- @tparam color to test
|
||||
-- @treturn boolean is color
|
||||
function color.is_color(a)
|
||||
if type(a) ~= "table" then
|
||||
return false
|
||||
end
|
||||
|
||||
for i = 1, 4 do
|
||||
if type(a[i]) ~= "number" then
|
||||
return false
|
||||
end
|
||||
end
|
||||
|
||||
return true
|
||||
end
|
||||
|
||||
--- Return a formatted string.
|
||||
-- @tparam color a color to be turned into a string
|
||||
-- @treturn string formatted
|
||||
function color.to_string(a)
|
||||
return string.format("[ %3.0f, %3.0f, %3.0f, %3.0f ]", a[1], a[2], a[3], a[4])
|
||||
end
|
||||
|
||||
color_mt.__index = color
|
||||
color_mt.__tostring = color.to_string
|
||||
|
||||
function color_mt.__call(_, r, g, b, a)
|
||||
return color.new(r, g, b, a)
|
||||
end
|
||||
|
||||
function color_mt.__add(a, b)
|
||||
return new(a[1] + b[1], a[2] + b[2], a[3] + b[3], a[4] + b[4])
|
||||
end
|
||||
|
||||
function color_mt.__sub(a, b)
|
||||
return new(a[1] - b[1], a[2] - b[2], a[3] - b[3], a[4] - b[4])
|
||||
end
|
||||
|
||||
function color_mt.__mul(a, b)
|
||||
if type(a) == "number" then
|
||||
return new(a * b[1], a * b[2], a * b[3], a * b[4])
|
||||
elseif type(b) == "number" then
|
||||
return new(b * a[1], b * a[2], b * a[3], b * a[4])
|
||||
else
|
||||
return new(a[1] * b[1], a[2] * b[2], a[3] * b[3], a[4] * b[4])
|
||||
end
|
||||
end
|
||||
|
||||
return setmetatable({}, color_mt)
|
20
libs/cpml/constants.lua
Normal file
20
libs/cpml/constants.lua
Normal file
@ -0,0 +1,20 @@
|
||||
--- Various useful constants
|
||||
-- @module constants
|
||||
|
||||
--- Constants
|
||||
-- @table constants
|
||||
-- @field FLT_EPSILON Floating point precision breaks down
|
||||
-- @field DBL_EPSILON Double-precise floating point precision breaks down
|
||||
-- @field DOT_THRESHOLD Close enough to 1 for interpolations to occur
|
||||
local constants = {}
|
||||
|
||||
-- same as C's FLT_EPSILON
|
||||
constants.FLT_EPSILON = 1.19209290e-07
|
||||
|
||||
-- same as C's DBL_EPSILON
|
||||
constants.DBL_EPSILON = 2.2204460492503131e-16
|
||||
|
||||
-- used for quaternion.slerp
|
||||
constants.DOT_THRESHOLD = 0.9995
|
||||
|
||||
return constants
|
709
libs/cpml/intersect.lua
Normal file
709
libs/cpml/intersect.lua
Normal file
@ -0,0 +1,709 @@
|
||||
--- Various geometric intersections
|
||||
-- @module intersect
|
||||
|
||||
local modules = (...):gsub('%.[^%.]+$', '') .. "."
|
||||
local constants = require(modules .. "constants")
|
||||
local mat4 = require(modules .. "mat4")
|
||||
local vec3 = require(modules .. "vec3")
|
||||
local utils = require(modules .. "utils")
|
||||
local DBL_EPSILON = constants.DBL_EPSILON
|
||||
local sqrt = math.sqrt
|
||||
local abs = math.abs
|
||||
local min = math.min
|
||||
local max = math.max
|
||||
local intersect = {}
|
||||
|
||||
-- https://blogs.msdn.microsoft.com/rezanour/2011/08/07/barycentric-coordinates-and-point-in-triangle-tests/
|
||||
-- point is a vec3
|
||||
-- triangle[1] is a vec3
|
||||
-- triangle[2] is a vec3
|
||||
-- triangle[3] is a vec3
|
||||
function intersect.point_triangle(point, triangle)
|
||||
local u = triangle[2] - triangle[1]
|
||||
local v = triangle[3] - triangle[1]
|
||||
local w = point - triangle[1]
|
||||
|
||||
local vw = v:cross(w)
|
||||
local vu = v:cross(u)
|
||||
|
||||
if vw:dot(vu) < 0 then
|
||||
return false
|
||||
end
|
||||
|
||||
local uw = u:cross(w)
|
||||
local uv = u:cross(v)
|
||||
|
||||
if uw:dot(uv) < 0 then
|
||||
return false
|
||||
end
|
||||
|
||||
local d = uv:len()
|
||||
local r = vw:len() / d
|
||||
local t = uw:len() / d
|
||||
|
||||
return r + t <= 1
|
||||
end
|
||||
|
||||
-- point is a vec3
|
||||
-- aabb.min is a vec3
|
||||
-- aabb.max is a vec3
|
||||
function intersect.point_aabb(point, aabb)
|
||||
return
|
||||
aabb.min.x <= point.x and
|
||||
aabb.max.x >= point.x and
|
||||
aabb.min.y <= point.y and
|
||||
aabb.max.y >= point.y and
|
||||
aabb.min.z <= point.z and
|
||||
aabb.max.z >= point.z
|
||||
end
|
||||
|
||||
-- point is a vec3
|
||||
-- frustum.left is a plane { a, b, c, d }
|
||||
-- frustum.right is a plane { a, b, c, d }
|
||||
-- frustum.bottom is a plane { a, b, c, d }
|
||||
-- frustum.top is a plane { a, b, c, d }
|
||||
-- frustum.near is a plane { a, b, c, d }
|
||||
-- frustum.far is a plane { a, b, c, d }
|
||||
function intersect.point_frustum(point, frustum)
|
||||
local x, y, z = point:unpack()
|
||||
local planes = {
|
||||
frustum.left,
|
||||
frustum.right,
|
||||
frustum.bottom,
|
||||
frustum.top,
|
||||
frustum.near,
|
||||
frustum.far or false
|
||||
}
|
||||
|
||||
-- Skip the last test for infinite projections, it'll never fail.
|
||||
if not planes[6] then
|
||||
table.remove(planes)
|
||||
end
|
||||
|
||||
local dot
|
||||
for i = 1, #planes do
|
||||
dot = planes[i].a * x + planes[i].b * y + planes[i].c * z + planes[i].d
|
||||
if dot <= 0 then
|
||||
return false
|
||||
end
|
||||
end
|
||||
|
||||
return true
|
||||
end
|
||||
|
||||
-- http://www.lighthouse3d.com/tutorials/maths/ray-triangle-intersection/
|
||||
-- ray.position is a vec3
|
||||
-- ray.direction is a vec3
|
||||
-- triangle[1] is a vec3
|
||||
-- triangle[2] is a vec3
|
||||
-- triangle[3] is a vec3
|
||||
-- backface_cull is a boolean (optional)
|
||||
function intersect.ray_triangle(ray, triangle, backface_cull)
|
||||
local e1 = triangle[2] - triangle[1]
|
||||
local e2 = triangle[3] - triangle[1]
|
||||
local h = ray.direction:cross(e2)
|
||||
local a = h:dot(e1)
|
||||
|
||||
-- if a is negative, ray hits the backface
|
||||
if backface_cull and a < 0 then
|
||||
return false
|
||||
end
|
||||
|
||||
-- if a is too close to 0, ray does not intersect triangle
|
||||
if abs(a) <= DBL_EPSILON then
|
||||
return false
|
||||
end
|
||||
|
||||
local f = 1 / a
|
||||
local s = ray.position - triangle[1]
|
||||
local u = s:dot(h) * f
|
||||
|
||||
-- ray does not intersect triangle
|
||||
if u < 0 or u > 1 then
|
||||
return false
|
||||
end
|
||||
|
||||
local q = s:cross(e1)
|
||||
local v = ray.direction:dot(q) * f
|
||||
|
||||
-- ray does not intersect triangle
|
||||
if v < 0 or u + v > 1 then
|
||||
return false
|
||||
end
|
||||
|
||||
-- at this stage we can compute t to find out where
|
||||
-- the intersection point is on the line
|
||||
local t = q:dot(e2) * f
|
||||
|
||||
-- return position of intersection and distance from ray origin
|
||||
if t >= DBL_EPSILON then
|
||||
return ray.position + ray.direction * t, t
|
||||
end
|
||||
|
||||
-- ray does not intersect triangle
|
||||
return false
|
||||
end
|
||||
|
||||
-- https://gamedev.stackexchange.com/questions/96459/fast-ray-sphere-collision-code
|
||||
-- ray.position is a vec3
|
||||
-- ray.direction is a vec3
|
||||
-- sphere.position is a vec3
|
||||
-- sphere.radius is a number
|
||||
function intersect.ray_sphere(ray, sphere)
|
||||
local offset = ray.position - sphere.position
|
||||
local b = offset:dot(ray.direction)
|
||||
local c = offset:dot(offset) - sphere.radius * sphere.radius
|
||||
|
||||
-- ray's position outside sphere (c > 0)
|
||||
-- ray's direction pointing away from sphere (b > 0)
|
||||
if c > 0 and b > 0 then
|
||||
return false
|
||||
end
|
||||
|
||||
local discr = b * b - c
|
||||
|
||||
-- negative discriminant
|
||||
if discr < 0 then
|
||||
return false
|
||||
end
|
||||
|
||||
-- Clamp t to 0
|
||||
local t = -b - sqrt(discr)
|
||||
t = t < 0 and 0 or t
|
||||
|
||||
-- Return collision point and distance from ray origin
|
||||
return ray.position + ray.direction * t, t
|
||||
end
|
||||
|
||||
-- http://gamedev.stackexchange.com/a/18459
|
||||
-- ray.position is a vec3
|
||||
-- ray.direction is a vec3
|
||||
-- aabb.min is a vec3
|
||||
-- aabb.max is a vec3
|
||||
function intersect.ray_aabb(ray, aabb)
|
||||
local dir = ray.direction:normalize()
|
||||
local dirfrac = vec3(
|
||||
1 / dir.x,
|
||||
1 / dir.y,
|
||||
1 / dir.z
|
||||
)
|
||||
|
||||
local t1 = (aabb.min.x - ray.position.x) * dirfrac.x
|
||||
local t2 = (aabb.max.x - ray.position.x) * dirfrac.x
|
||||
local t3 = (aabb.min.y - ray.position.y) * dirfrac.y
|
||||
local t4 = (aabb.max.y - ray.position.y) * dirfrac.y
|
||||
local t5 = (aabb.min.z - ray.position.z) * dirfrac.z
|
||||
local t6 = (aabb.max.z - ray.position.z) * dirfrac.z
|
||||
|
||||
local tmin = max(max(min(t1, t2), min(t3, t4)), min(t5, t6))
|
||||
local tmax = min(min(max(t1, t2), max(t3, t4)), max(t5, t6))
|
||||
|
||||
-- ray is intersecting AABB, but whole AABB is behind us
|
||||
if tmax < 0 then
|
||||
return false
|
||||
end
|
||||
|
||||
-- ray does not intersect AABB
|
||||
if tmin > tmax then
|
||||
return false
|
||||
end
|
||||
|
||||
-- Return collision point and distance from ray origin
|
||||
return ray.position + ray.direction * tmin, tmin
|
||||
end
|
||||
|
||||
-- http://stackoverflow.com/a/23976134/1190664
|
||||
-- ray.position is a vec3
|
||||
-- ray.direction is a vec3
|
||||
-- plane.position is a vec3
|
||||
-- plane.normal is a vec3
|
||||
function intersect.ray_plane(ray, plane)
|
||||
local denom = plane.normal:dot(ray.direction)
|
||||
|
||||
-- ray does not intersect plane
|
||||
if abs(denom) < DBL_EPSILON then
|
||||
return false
|
||||
end
|
||||
|
||||
-- distance of direction
|
||||
local d = plane.position - ray.position
|
||||
local t = d:dot(plane.normal) / denom
|
||||
|
||||
if t < DBL_EPSILON then
|
||||
return false
|
||||
end
|
||||
|
||||
-- Return collision point and distance from ray origin
|
||||
return ray.position + ray.direction * t, t
|
||||
end
|
||||
|
||||
function intersect.ray_capsule(ray, capsule)
|
||||
local dist2, p1, p2 = intersect.closest_point_segment_segment(
|
||||
ray.position,
|
||||
ray.position + ray.direction * 1e10,
|
||||
capsule.a,
|
||||
capsule.b
|
||||
)
|
||||
if dist2 <= capsule.radius^2 then
|
||||
return p1
|
||||
end
|
||||
|
||||
return false
|
||||
end
|
||||
|
||||
-- https://web.archive.org/web/20120414063459/http://local.wasp.uwa.edu.au/~pbourke//geometry/lineline3d/
|
||||
-- a[1] is a vec3
|
||||
-- a[2] is a vec3
|
||||
-- b[1] is a vec3
|
||||
-- b[2] is a vec3
|
||||
-- e is a number
|
||||
function intersect.line_line(a, b, e)
|
||||
-- new points
|
||||
local p13 = a[1] - b[1]
|
||||
local p43 = b[2] - b[1]
|
||||
local p21 = a[2] - a[1]
|
||||
|
||||
-- if lengths are negative or too close to 0, lines do not intersect
|
||||
if p43:len2() < DBL_EPSILON or p21:len2() < DBL_EPSILON then
|
||||
return false
|
||||
end
|
||||
|
||||
-- dot products
|
||||
local d1343 = p13:dot(p43)
|
||||
local d4321 = p43:dot(p21)
|
||||
local d1321 = p13:dot(p21)
|
||||
local d4343 = p43:dot(p43)
|
||||
local d2121 = p21:dot(p21)
|
||||
local denom = d2121 * d4343 - d4321 * d4321
|
||||
|
||||
-- if denom is too close to 0, lines do not intersect
|
||||
if abs(denom) < DBL_EPSILON then
|
||||
return false
|
||||
end
|
||||
|
||||
local numer = d1343 * d4321 - d1321 * d4343
|
||||
local mua = numer / denom
|
||||
local mub = (d1343 + d4321 * mua) / d4343
|
||||
|
||||
-- return positions of intersection on each line
|
||||
local out1 = a[1] + p21 * mua
|
||||
local out2 = b[1] + p43 * mub
|
||||
local dist = out1:dist(out2)
|
||||
|
||||
-- if distance of the shortest segment between lines is less than threshold
|
||||
if e and dist > e then
|
||||
return false
|
||||
end
|
||||
|
||||
return { out1, out2 }, dist
|
||||
end
|
||||
|
||||
-- a[1] is a vec3
|
||||
-- a[2] is a vec3
|
||||
-- b[1] is a vec3
|
||||
-- b[2] is a vec3
|
||||
-- e is a number
|
||||
function intersect.segment_segment(a, b, e)
|
||||
local c, d = intersect.line_line(a, b, e)
|
||||
|
||||
if c and ((
|
||||
a[1].x <= c[1].x and
|
||||
a[1].y <= c[1].y and
|
||||
a[1].z <= c[1].z and
|
||||
c[1].x <= a[2].x and
|
||||
c[1].y <= a[2].y and
|
||||
c[1].z <= a[2].z
|
||||
) or (
|
||||
a[1].x >= c[1].x and
|
||||
a[1].y >= c[1].y and
|
||||
a[1].z >= c[1].z and
|
||||
c[1].x >= a[2].x and
|
||||
c[1].y >= a[2].y and
|
||||
c[1].z >= a[2].z
|
||||
)) and ((
|
||||
b[1].x <= c[2].x and
|
||||
b[1].y <= c[2].y and
|
||||
b[1].z <= c[2].z and
|
||||
c[2].x <= b[2].x and
|
||||
c[2].y <= b[2].y and
|
||||
c[2].z <= b[2].z
|
||||
) or (
|
||||
b[1].x >= c[2].x and
|
||||
b[1].y >= c[2].y and
|
||||
b[1].z >= c[2].z and
|
||||
c[2].x >= b[2].x and
|
||||
c[2].y >= b[2].y and
|
||||
c[2].z >= b[2].z
|
||||
)) then
|
||||
return c, d
|
||||
end
|
||||
|
||||
-- segments do not intersect
|
||||
return false
|
||||
end
|
||||
|
||||
-- a.min is a vec3
|
||||
-- a.max is a vec3
|
||||
-- b.min is a vec3
|
||||
-- b.max is a vec3
|
||||
function intersect.aabb_aabb(a, b)
|
||||
return
|
||||
a.min.x <= b.max.x and
|
||||
a.max.x >= b.min.x and
|
||||
a.min.y <= b.max.y and
|
||||
a.max.y >= b.min.y and
|
||||
a.min.z <= b.max.z and
|
||||
a.max.z >= b.min.z
|
||||
end
|
||||
|
||||
-- aabb.position is a vec3
|
||||
-- aabb.extent is a vec3 (half-size)
|
||||
-- obb.position is a vec3
|
||||
-- obb.extent is a vec3 (half-size)
|
||||
-- obb.rotation is a mat4
|
||||
function intersect.aabb_obb(aabb, obb)
|
||||
local a = aabb.extent
|
||||
local b = obb.extent
|
||||
local T = obb.position - aabb.position
|
||||
local rot = mat4():transpose(obb.rotation)
|
||||
local B = {}
|
||||
local t
|
||||
|
||||
for i = 1, 3 do
|
||||
B[i] = {}
|
||||
for j = 1, 3 do
|
||||
assert((i - 1) * 4 + j < 16 and (i - 1) * 4 + j > 0)
|
||||
B[i][j] = abs(rot[(i - 1) * 4 + j]) + 1e-6
|
||||
end
|
||||
end
|
||||
|
||||
t = abs(T.x)
|
||||
if not (t <= (b.x + a.x * B[1][1] + b.y * B[1][2] + b.z * B[1][3])) then return false end
|
||||
t = abs(T.x * B[1][1] + T.y * B[2][1] + T.z * B[3][1])
|
||||
if not (t <= (b.x + a.x * B[1][1] + a.y * B[2][1] + a.z * B[3][1])) then return false end
|
||||
t = abs(T.y)
|
||||
if not (t <= (a.y + b.x * B[2][1] + b.y * B[2][2] + b.z * B[2][3])) then return false end
|
||||
t = abs(T.z)
|
||||
if not (t <= (a.z + b.x * B[3][1] + b.y * B[3][2] + b.z * B[3][3])) then return false end
|
||||
t = abs(T.x * B[1][2] + T.y * B[2][2] + T.z * B[3][2])
|
||||
if not (t <= (b.y + a.x * B[1][2] + a.y * B[2][2] + a.z * B[3][2])) then return false end
|
||||
t = abs(T.x * B[1][3] + T.y * B[2][3] + T.z * B[3][3])
|
||||
if not (t <= (b.z + a.x * B[1][3] + a.y * B[2][3] + a.z * B[3][3])) then return false end
|
||||
t = abs(T.z * B[2][1] - T.y * B[3][1])
|
||||
if not (t <= (a.y * B[3][1] + a.z * B[2][1] + b.y * B[1][3] + b.z * B[1][2])) then return false end
|
||||
t = abs(T.z * B[2][2] - T.y * B[3][2])
|
||||
if not (t <= (a.y * B[3][2] + a.z * B[2][2] + b.x * B[1][3] + b.z * B[1][1])) then return false end
|
||||
t = abs(T.z * B[2][3] - T.y * B[3][3])
|
||||
if not (t <= (a.y * B[3][3] + a.z * B[2][3] + b.x * B[1][2] + b.y * B[1][1])) then return false end
|
||||
t = abs(T.x * B[3][1] - T.z * B[1][1])
|
||||
if not (t <= (a.x * B[3][1] + a.z * B[1][1] + b.y * B[2][3] + b.z * B[2][2])) then return false end
|
||||
t = abs(T.x * B[3][2] - T.z * B[1][2])
|
||||
if not (t <= (a.x * B[3][2] + a.z * B[1][2] + b.x * B[2][3] + b.z * B[2][1])) then return false end
|
||||
t = abs(T.x * B[3][3] - T.z * B[1][3])
|
||||
if not (t <= (a.x * B[3][3] + a.z * B[1][3] + b.x * B[2][2] + b.y * B[2][1])) then return false end
|
||||
t = abs(T.y * B[1][1] - T.x * B[2][1])
|
||||
if not (t <= (a.x * B[2][1] + a.y * B[1][1] + b.y * B[3][3] + b.z * B[3][2])) then return false end
|
||||
t = abs(T.y * B[1][2] - T.x * B[2][2])
|
||||
if not (t <= (a.x * B[2][2] + a.y * B[1][2] + b.x * B[3][3] + b.z * B[3][1])) then return false end
|
||||
t = abs(T.y * B[1][3] - T.x * B[2][3])
|
||||
if not (t <= (a.x * B[2][3] + a.y * B[1][3] + b.x * B[3][2] + b.y * B[3][1])) then return false end
|
||||
|
||||
-- https://gamedev.stackexchange.com/questions/24078/which-side-was-hit
|
||||
-- Minkowski Sum
|
||||
local wy = (aabb.extent * 2 + obb.extent * 2) * (aabb.position.y - obb.position.y)
|
||||
local hx = (aabb.extent * 2 + obb.extent * 2) * (aabb.position.x - obb.position.x)
|
||||
|
||||
if wy.x > hx.x and wy.y > hx.y and wy.z > hx.z then
|
||||
if wy.x > -hx.x and wy.y > -hx.y and wy.z > -hx.z then
|
||||
return vec3(obb.rotation * { 0, -1, 0, 1 })
|
||||
else
|
||||
return vec3(obb.rotation * { -1, 0, 0, 1 })
|
||||
end
|
||||
else
|
||||
if wy.x > -hx.x and wy.y > -hx.y and wy.z > -hx.z then
|
||||
return vec3(obb.rotation * { 1, 0, 0, 1 })
|
||||
else
|
||||
return vec3(obb.rotation * { 0, 1, 0, 1 })
|
||||
end
|
||||
end
|
||||
end
|
||||
|
||||
-- http://stackoverflow.com/a/4579069/1190664
|
||||
-- aabb.min is a vec3
|
||||
-- aabb.max is a vec3
|
||||
-- sphere.position is a vec3
|
||||
-- sphere.radius is a number
|
||||
local axes = { "x", "y", "z" }
|
||||
function intersect.aabb_sphere(aabb, sphere)
|
||||
local dist2 = sphere.radius ^ 2
|
||||
|
||||
for _, axis in ipairs(axes) do
|
||||
local pos = sphere.position[axis]
|
||||
local amin = aabb.min[axis]
|
||||
local amax = aabb.max[axis]
|
||||
|
||||
if pos < amin then
|
||||
dist2 = dist2 - (pos - amin) ^ 2
|
||||
elseif pos > amax then
|
||||
dist2 = dist2 - (pos - amax) ^ 2
|
||||
end
|
||||
end
|
||||
|
||||
return dist2 > 0
|
||||
end
|
||||
|
||||
-- aabb.min is a vec3
|
||||
-- aabb.max is a vec3
|
||||
-- frustum.left is a plane { a, b, c, d }
|
||||
-- frustum.right is a plane { a, b, c, d }
|
||||
-- frustum.bottom is a plane { a, b, c, d }
|
||||
-- frustum.top is a plane { a, b, c, d }
|
||||
-- frustum.near is a plane { a, b, c, d }
|
||||
-- frustum.far is a plane { a, b, c, d }
|
||||
function intersect.aabb_frustum(aabb, frustum)
|
||||
-- Indexed for the 'index trick' later
|
||||
local box = {
|
||||
aabb.min,
|
||||
aabb.max
|
||||
}
|
||||
|
||||
-- We have 6 planes defining the frustum, 5 if infinite.
|
||||
local planes = {
|
||||
frustum.left,
|
||||
frustum.right,
|
||||
frustum.bottom,
|
||||
frustum.top,
|
||||
frustum.near,
|
||||
frustum.far or false
|
||||
}
|
||||
|
||||
-- Skip the last test for infinite projections, it'll never fail.
|
||||
if not planes[6] then
|
||||
table.remove(planes)
|
||||
end
|
||||
|
||||
for i = 1, #planes do
|
||||
-- This is the current plane
|
||||
local p = planes[i]
|
||||
|
||||
-- p-vertex selection (with the index trick)
|
||||
-- According to the plane normal we can know the
|
||||
-- indices of the positive vertex
|
||||
local px = p.a > 0.0 and 2 or 1
|
||||
local py = p.b > 0.0 and 2 or 1
|
||||
local pz = p.c > 0.0 and 2 or 1
|
||||
|
||||
-- project p-vertex on plane normal
|
||||
-- (How far is p-vertex from the origin)
|
||||
local dot = (p.a * box[px].x) + (p.b * box[py].y) + (p.c * box[pz].z)
|
||||
|
||||
-- Doesn't intersect if it is behind the plane
|
||||
if dot < -p.d then
|
||||
return false
|
||||
end
|
||||
end
|
||||
|
||||
return true
|
||||
end
|
||||
|
||||
-- outer.min is a vec3
|
||||
-- outer.max is a vec3
|
||||
-- inner.min is a vec3
|
||||
-- inner.max is a vec3
|
||||
function intersect.encapsulate_aabb(outer, inner)
|
||||
return
|
||||
outer.min.x <= inner.min.x and
|
||||
outer.max.x >= inner.max.x and
|
||||
outer.min.y <= inner.min.y and
|
||||
outer.max.y >= inner.max.y and
|
||||
outer.min.z <= inner.min.z and
|
||||
outer.max.z >= inner.max.z
|
||||
end
|
||||
|
||||
-- a.position is a vec3
|
||||
-- a.radius is a number
|
||||
-- b.position is a vec3
|
||||
-- b.radius is a number
|
||||
function intersect.circle_circle(a, b)
|
||||
return a.position:dist(b.position) <= a.radius + b.radius
|
||||
end
|
||||
|
||||
-- a.position is a vec3
|
||||
-- a.radius is a number
|
||||
-- b.position is a vec3
|
||||
-- b.radius is a number
|
||||
function intersect.sphere_sphere(a, b)
|
||||
return intersect.circle_circle(a, b)
|
||||
end
|
||||
|
||||
-- http://realtimecollisiondetection.net/blog/?p=103
|
||||
-- sphere.position is a vec3
|
||||
-- sphere.radius is a number
|
||||
-- triangle[1] is a vec3
|
||||
-- triangle[2] is a vec3
|
||||
-- triangle[3] is a vec3
|
||||
function intersect.sphere_triangle(sphere, triangle)
|
||||
-- Sphere is centered at origin
|
||||
local A = triangle[1] - sphere.position
|
||||
local B = triangle[2] - sphere.position
|
||||
local C = triangle[3] - sphere.position
|
||||
|
||||
-- Compute normal of triangle plane
|
||||
local V = (B - A):cross(C - A)
|
||||
|
||||
-- Test if sphere lies outside triangle plane
|
||||
local rr = sphere.radius * sphere.radius
|
||||
local d = A:dot(V)
|
||||
local e = V:dot(V)
|
||||
local s1 = d * d > rr * e
|
||||
|
||||
-- Test if sphere lies outside triangle vertices
|
||||
local aa = A:dot(A)
|
||||
local ab = A:dot(B)
|
||||
local ac = A:dot(C)
|
||||
local bb = B:dot(B)
|
||||
local bc = B:dot(C)
|
||||
local cc = C:dot(C)
|
||||
|
||||
local s2 = (aa > rr) and (ab > aa) and (ac > aa)
|
||||
local s3 = (bb > rr) and (ab > bb) and (bc > bb)
|
||||
local s4 = (cc > rr) and (ac > cc) and (bc > cc)
|
||||
|
||||
-- Test is sphere lies outside triangle edges
|
||||
local AB = B - A
|
||||
local BC = C - B
|
||||
local CA = A - C
|
||||
|
||||
local d1 = ab - aa
|
||||
local d2 = bc - bb
|
||||
local d3 = ac - cc
|
||||
|
||||
local e1 = AB:dot(AB)
|
||||
local e2 = BC:dot(BC)
|
||||
local e3 = CA:dot(CA)
|
||||
|
||||
local Q1 = A * e1 - AB * d1
|
||||
local Q2 = B * e2 - BC * d2
|
||||
local Q3 = C * e3 - CA * d3
|
||||
|
||||
local QC = C * e1 - Q1
|
||||
local QA = A * e2 - Q2
|
||||
local QB = B * e3 - Q3
|
||||
|
||||
local s5 = (Q1:dot(Q1) > rr * e1 * e1) and (Q1:dot(QC) > 0)
|
||||
local s6 = (Q2:dot(Q2) > rr * e2 * e2) and (Q2:dot(QA) > 0)
|
||||
local s7 = (Q3:dot(Q3) > rr * e3 * e3) and (Q3:dot(QB) > 0)
|
||||
|
||||
-- Return whether or not any of the tests passed
|
||||
return s1 or s2 or s3 or s4 or s5 or s6 or s7
|
||||
end
|
||||
|
||||
-- sphere.position is a vec3
|
||||
-- sphere.radius is a number
|
||||
-- frustum.left is a plane { a, b, c, d }
|
||||
-- frustum.right is a plane { a, b, c, d }
|
||||
-- frustum.bottom is a plane { a, b, c, d }
|
||||
-- frustum.top is a plane { a, b, c, d }
|
||||
-- frustum.near is a plane { a, b, c, d }
|
||||
-- frustum.far is a plane { a, b, c, d }
|
||||
function intersect.sphere_frustum(sphere, frustum)
|
||||
local x, y, z = sphere.position:unpack()
|
||||
local planes = {
|
||||
frustum.left,
|
||||
frustum.right,
|
||||
frustum.bottom,
|
||||
frustum.top,
|
||||
frustum.near
|
||||
}
|
||||
|
||||
if frustum.far then
|
||||
table.insert(planes, frustum.far, 5)
|
||||
end
|
||||
|
||||
local dot
|
||||
for i = 1, #planes do
|
||||
dot = planes[i].a * x + planes[i].b * y + planes[i].c * z + planes[i].d
|
||||
|
||||
if dot <= -sphere.radius then
|
||||
return false
|
||||
end
|
||||
end
|
||||
|
||||
-- dot + radius is the distance of the object from the near plane.
|
||||
-- make sure that the near plane is the last test!
|
||||
return dot + sphere.radius
|
||||
end
|
||||
|
||||
function intersect.capsule_capsule(c1, c2)
|
||||
local dist2, p1, p2 = intersect.closest_point_segment_segment(c1.a, c1.b, c2.a, c2.b)
|
||||
local radius = c1.radius + c2.radius
|
||||
|
||||
if dist2 <= radius * radius then
|
||||
return p1, p2
|
||||
end
|
||||
|
||||
return false
|
||||
end
|
||||
|
||||
function intersect.closest_point_segment_segment(p1, p2, p3, p4)
|
||||
local s -- Distance of intersection along segment 1
|
||||
local t -- Distance of intersection along segment 2
|
||||
local c1 -- Collision point on segment 1
|
||||
local c2 -- Collision point on segment 2
|
||||
|
||||
local d1 = p2 - p1 -- Direction of segment 1
|
||||
local d2 = p4 - p3 -- Direction of segment 2
|
||||
local r = p1 - p3
|
||||
local a = d1:dot(d1)
|
||||
local e = d2:dot(d2)
|
||||
local f = d2:dot(r)
|
||||
|
||||
-- Check if both segments degenerate into points
|
||||
if a <= DBL_EPSILON and e <= DBL_EPSILON then
|
||||
s = 0
|
||||
t = 0
|
||||
c1 = p1
|
||||
c2 = p3
|
||||
return (c1 - c2):dot(c1 - c2), s, t, c1, c2
|
||||
end
|
||||
|
||||
-- Check if segment 1 degenerates into a point
|
||||
if a <= DBL_EPSILON then
|
||||
s = 0
|
||||
t = utils.clamp(f / e, 0, 1)
|
||||
else
|
||||
local c = d1:dot(r)
|
||||
|
||||
-- Check is segment 2 degenerates into a point
|
||||
if e <= DBL_EPSILON then
|
||||
t = 0
|
||||
s = utils.clamp(-c / a, 0, 1)
|
||||
else
|
||||
local b = d1:dot(d2)
|
||||
local denom = a * e - b * b
|
||||
|
||||
if abs(denom) > 0 then
|
||||
s = utils.clamp((b * f - c * e) / denom, 0, 1)
|
||||
else
|
||||
s = 0
|
||||
end
|
||||
|
||||
t = (b * s + f) / e
|
||||
|
||||
if t < 0 then
|
||||
t = 0
|
||||
s = utils.clamp(-c / a, 0, 1)
|
||||
elseif t > 1 then
|
||||
t = 1
|
||||
s = utils.clamp((b - c) / a, 0, 1)
|
||||
end
|
||||
end
|
||||
end
|
||||
|
||||
c1 = p1 + d1 * s
|
||||
c2 = p3 + d2 * t
|
||||
|
||||
return (c1 - c2):dot(c1 - c2), c1, c2, s, t
|
||||
end
|
||||
|
||||
return intersect
|
943
libs/cpml/mat4.lua
Normal file
943
libs/cpml/mat4.lua
Normal file
@ -0,0 +1,943 @@
|
||||
--- double 4x4, 1-based, column major matrices
|
||||
-- @module mat4
|
||||
local modules = (...):gsub('%.[^%.]+$', '') .. "."
|
||||
local constants = require(modules .. "constants")
|
||||
local vec2 = require(modules .. "vec2")
|
||||
local vec3 = require(modules .. "vec3")
|
||||
local quat = require(modules .. "quat")
|
||||
local utils = require(modules .. "utils")
|
||||
local precond = require(modules .. "_private_precond")
|
||||
local private = require(modules .. "_private_utils")
|
||||
local sqrt = math.sqrt
|
||||
local cos = math.cos
|
||||
local sin = math.sin
|
||||
local tan = math.tan
|
||||
local rad = math.rad
|
||||
local mat4 = {}
|
||||
local mat4_mt = {}
|
||||
|
||||
-- Private constructor.
|
||||
local function new(m)
|
||||
m = m or {
|
||||
0, 0, 0, 0,
|
||||
0, 0, 0, 0,
|
||||
0, 0, 0, 0,
|
||||
0, 0, 0, 0
|
||||
}
|
||||
m._m = m
|
||||
return setmetatable(m, mat4_mt)
|
||||
end
|
||||
|
||||
-- Convert matrix into identity
|
||||
local function identity(m)
|
||||
m[1], m[2], m[3], m[4] = 1, 0, 0, 0
|
||||
m[5], m[6], m[7], m[8] = 0, 1, 0, 0
|
||||
m[9], m[10], m[11], m[12] = 0, 0, 1, 0
|
||||
m[13], m[14], m[15], m[16] = 0, 0, 0, 1
|
||||
return m
|
||||
end
|
||||
|
||||
-- Do the check to see if JIT is enabled. If so use the optimized FFI structs.
|
||||
local status, ffi
|
||||
if type(jit) == "table" and jit.status() then
|
||||
-- status, ffi = pcall(require, "ffi")
|
||||
if status then
|
||||
ffi.cdef "typedef struct { double _m[16]; } cpml_mat4;"
|
||||
new = ffi.typeof("cpml_mat4")
|
||||
end
|
||||
end
|
||||
|
||||
-- Statically allocate a temporary variable used in some of our functions.
|
||||
local tmp = new()
|
||||
local tm4 = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }
|
||||
local tv4 = { 0, 0, 0, 0 }
|
||||
|
||||
--- The public constructor.
|
||||
-- @param a Can be of four types: </br>
|
||||
-- table Length 16 (4x4 matrix)
|
||||
-- table Length 9 (3x3 matrix)
|
||||
-- table Length 4 (4 vec4s)
|
||||
-- nil
|
||||
-- @treturn mat4 out
|
||||
function mat4.new(a)
|
||||
local out = new()
|
||||
|
||||
-- 4x4 matrix
|
||||
if type(a) == "table" and #a == 16 then
|
||||
for i = 1, 16 do
|
||||
out[i] = tonumber(a[i])
|
||||
end
|
||||
|
||||
-- 3x3 matrix
|
||||
elseif type(a) == "table" and #a == 9 then
|
||||
out[1], out[2], out[3] = a[1], a[2], a[3]
|
||||
out[5], out[6], out[7] = a[4], a[5], a[6]
|
||||
out[9], out[10], out[11] = a[7], a[8], a[9]
|
||||
out[16] = 1
|
||||
|
||||
-- 4 vec4s
|
||||
elseif type(a) == "table" and type(a[1]) == "table" then
|
||||
local idx = 1
|
||||
for i = 1, 4 do
|
||||
for j = 1, 4 do
|
||||
out[idx] = a[i][j]
|
||||
idx = idx + 1
|
||||
end
|
||||
end
|
||||
|
||||
-- nil
|
||||
else
|
||||
out[1] = 1
|
||||
out[6] = 1
|
||||
out[11] = 1
|
||||
out[16] = 1
|
||||
end
|
||||
|
||||
return out
|
||||
end
|
||||
|
||||
--- Create an identity matrix.
|
||||
-- @tparam mat4 a Matrix to overwrite
|
||||
-- @treturn mat4 out
|
||||
function mat4.identity(a)
|
||||
return identity(a or new())
|
||||
end
|
||||
|
||||
--- Create a matrix from an angle/axis pair.
|
||||
-- @tparam number angle Angle of rotation
|
||||
-- @tparam vec3 axis Axis of rotation
|
||||
-- @treturn mat4 out
|
||||
function mat4.from_angle_axis(angle, axis)
|
||||
local l = axis:len()
|
||||
if l == 0 then
|
||||
return new()
|
||||
end
|
||||
|
||||
local x, y, z = axis.x / l, axis.y / l, axis.z / l
|
||||
local c = cos(angle)
|
||||
local s = sin(angle)
|
||||
|
||||
return new {
|
||||
x*x*(1-c)+c, y*x*(1-c)+z*s, x*z*(1-c)-y*s, 0,
|
||||
x*y*(1-c)-z*s, y*y*(1-c)+c, y*z*(1-c)+x*s, 0,
|
||||
x*z*(1-c)+y*s, y*z*(1-c)-x*s, z*z*(1-c)+c, 0,
|
||||
0, 0, 0, 1
|
||||
}
|
||||
end
|
||||
|
||||
--- Create a matrix from a quaternion.
|
||||
-- @tparam quat q Rotation quaternion
|
||||
-- @treturn mat4 out
|
||||
function mat4.from_quaternion(q)
|
||||
return mat4.from_angle_axis(q:to_angle_axis())
|
||||
end
|
||||
|
||||
--- Create a matrix from a direction/up pair.
|
||||
-- @tparam vec3 direction Vector direction
|
||||
-- @tparam vec3 up Up direction
|
||||
-- @treturn mat4 out
|
||||
function mat4.from_direction(direction, up)
|
||||
local forward = vec3.normalize(direction)
|
||||
local side = vec3.cross(forward, up):normalize()
|
||||
local new_up = vec3.cross(side, forward):normalize()
|
||||
|
||||
local out = new()
|
||||
out[1] = side.x
|
||||
out[5] = side.y
|
||||
out[9] = side.z
|
||||
out[2] = new_up.x
|
||||
out[6] = new_up.y
|
||||
out[10] = new_up.z
|
||||
out[3] = forward.x
|
||||
out[7] = forward.y
|
||||
out[11] = forward.z
|
||||
out[16] = 1
|
||||
|
||||
return out
|
||||
end
|
||||
|
||||
--- Create a matrix from a transform.
|
||||
-- @tparam vec3 trans Translation vector
|
||||
-- @tparam quat rot Rotation quaternion
|
||||
-- @tparam vec3 scale Scale vector
|
||||
-- @treturn mat4 out
|
||||
function mat4.from_transform(trans, rot, scale)
|
||||
local rx, ry, rz, rw = rot.x, rot.y, rot.z, rot.w
|
||||
|
||||
local sm = new {
|
||||
scale.x, 0, 0, 0,
|
||||
0, scale.y, 0, 0,
|
||||
0, 0, scale.z, 0,
|
||||
0, 0, 0, 1,
|
||||
}
|
||||
|
||||
local rm = new {
|
||||
1-2*(ry*ry+rz*rz), 2*(rx*ry-rz*rw), 2*(rx*rz+ry*rw), 0,
|
||||
2*(rx*ry+rz*rw), 1-2*(rx*rx+rz*rz), 2*(ry*rz-rx*rw), 0,
|
||||
2*(rx*rz-ry*rw), 2*(ry*rz+rx*rw), 1-2*(rx*rx+ry*ry), 0,
|
||||
0, 0, 0, 1
|
||||
}
|
||||
|
||||
local rsm = rm * sm
|
||||
|
||||
rsm[13] = trans.x
|
||||
rsm[14] = trans.y
|
||||
rsm[15] = trans.z
|
||||
|
||||
return rsm
|
||||
end
|
||||
|
||||
--- Create matrix from orthogonal.
|
||||
-- @tparam number left
|
||||
-- @tparam number right
|
||||
-- @tparam number top
|
||||
-- @tparam number bottom
|
||||
-- @tparam number near
|
||||
-- @tparam number far
|
||||
-- @treturn mat4 out
|
||||
function mat4.from_ortho(left, right, top, bottom, near, far)
|
||||
local out = new()
|
||||
out[1] = 2 / (right - left)
|
||||
out[6] = 2 / (top - bottom)
|
||||
out[11] = -2 / (far - near)
|
||||
out[13] = -((right + left) / (right - left))
|
||||
out[14] = -((top + bottom) / (top - bottom))
|
||||
out[15] = -((far + near) / (far - near))
|
||||
out[16] = 1
|
||||
|
||||
return out
|
||||
end
|
||||
|
||||
--- Create matrix from perspective.
|
||||
-- @tparam number fovy Field of view
|
||||
-- @tparam number aspect Aspect ratio
|
||||
-- @tparam number near Near plane
|
||||
-- @tparam number far Far plane
|
||||
-- @treturn mat4 out
|
||||
function mat4.from_perspective(fovy, aspect, near, far)
|
||||
assert(aspect ~= 0)
|
||||
assert(near ~= far)
|
||||
|
||||
local t = tan(rad(fovy) / 2)
|
||||
local out = new()
|
||||
out[1] = 1 / (t * aspect)
|
||||
out[6] = 1 / t
|
||||
out[11] = -(far + near) / (far - near)
|
||||
out[12] = -1
|
||||
out[15] = -(2 * far * near) / (far - near)
|
||||
out[16] = 0
|
||||
|
||||
return out
|
||||
end
|
||||
|
||||
-- Adapted from the Oculus SDK.
|
||||
--- Create matrix from HMD perspective.
|
||||
-- @tparam number tanHalfFov Tangent of half of the field of view
|
||||
-- @tparam number zNear Near plane
|
||||
-- @tparam number zFar Far plane
|
||||
-- @tparam boolean flipZ Z axis is flipped or not
|
||||
-- @tparam boolean farAtInfinity Far plane is infinite or not
|
||||
-- @treturn mat4 out
|
||||
function mat4.from_hmd_perspective(tanHalfFov, zNear, zFar, flipZ, farAtInfinity)
|
||||
-- CPML is right-handed and intended for GL, so these don't need to be arguments.
|
||||
local rightHanded = true
|
||||
local isOpenGL = true
|
||||
|
||||
local function CreateNDCScaleAndOffsetFromFov(tanHalfFov)
|
||||
local x_scale = 2 / (tanHalfFov.LeftTan + tanHalfFov.RightTan)
|
||||
local x_offset = (tanHalfFov.LeftTan - tanHalfFov.RightTan) * x_scale * 0.5
|
||||
local y_scale = 2 / (tanHalfFov.UpTan + tanHalfFov.DownTan )
|
||||
local y_offset = (tanHalfFov.UpTan - tanHalfFov.DownTan ) * y_scale * 0.5
|
||||
|
||||
local result = {
|
||||
Scale = vec2(x_scale, y_scale),
|
||||
Offset = vec2(x_offset, y_offset)
|
||||
}
|
||||
|
||||
-- Hey - why is that Y.Offset negated?
|
||||
-- It's because a projection matrix transforms from world coords with Y=up,
|
||||
-- whereas this is from NDC which is Y=down.
|
||||
return result
|
||||
end
|
||||
|
||||
if not flipZ and farAtInfinity then
|
||||
print("Error: Cannot push Far Clip to Infinity when Z-order is not flipped")
|
||||
farAtInfinity = false
|
||||
end
|
||||
|
||||
-- A projection matrix is very like a scaling from NDC, so we can start with that.
|
||||
local scaleAndOffset = CreateNDCScaleAndOffsetFromFov(tanHalfFov)
|
||||
local handednessScale = rightHanded and -1.0 or 1.0
|
||||
local projection = new()
|
||||
|
||||
-- Produces X result, mapping clip edges to [-w,+w]
|
||||
projection[1] = scaleAndOffset.Scale.x
|
||||
projection[2] = 0
|
||||
projection[3] = handednessScale * scaleAndOffset.Offset.x
|
||||
projection[4] = 0
|
||||
|
||||
-- Produces Y result, mapping clip edges to [-w,+w]
|
||||
-- Hey - why is that YOffset negated?
|
||||
-- It's because a projection matrix transforms from world coords with Y=up,
|
||||
-- whereas this is derived from an NDC scaling, which is Y=down.
|
||||
projection[5] = 0
|
||||
projection[6] = scaleAndOffset.Scale.y
|
||||
projection[7] = handednessScale * -scaleAndOffset.Offset.y
|
||||
projection[8] = 0
|
||||
|
||||
-- Produces Z-buffer result - app needs to fill this in with whatever Z range it wants.
|
||||
-- We'll just use some defaults for now.
|
||||
projection[9] = 0
|
||||
projection[10] = 0
|
||||
|
||||
if farAtInfinity then
|
||||
if isOpenGL then
|
||||
-- It's not clear this makes sense for OpenGL - you don't get the same precision benefits you do in D3D.
|
||||
projection[11] = -handednessScale
|
||||
projection[12] = 2.0 * zNear
|
||||
else
|
||||
projection[11] = 0
|
||||
projection[12] = zNear
|
||||
end
|
||||
else
|
||||
if isOpenGL then
|
||||
-- Clip range is [-w,+w], so 0 is at the middle of the range.
|
||||
projection[11] = -handednessScale * (flipZ and -1.0 or 1.0) * (zNear + zFar) / (zNear - zFar)
|
||||
projection[12] = 2.0 * ((flipZ and -zFar or zFar) * zNear) / (zNear - zFar)
|
||||
else
|
||||
-- Clip range is [0,+w], so 0 is at the start of the range.
|
||||
projection[11] = -handednessScale * (flipZ and -zNear or zFar) / (zNear - zFar)
|
||||
projection[12] = ((flipZ and -zFar or zFar) * zNear) / (zNear - zFar)
|
||||
end
|
||||
end
|
||||
|
||||
-- Produces W result (= Z in)
|
||||
projection[13] = 0
|
||||
projection[14] = 0
|
||||
projection[15] = handednessScale
|
||||
projection[16] = 0
|
||||
|
||||
return projection:transpose(projection)
|
||||
end
|
||||
|
||||
--- Clone a matrix.
|
||||
-- @tparam mat4 a Matrix to clone
|
||||
-- @treturn mat4 out
|
||||
function mat4.clone(a)
|
||||
return new(a)
|
||||
end
|
||||
|
||||
function mul_internal(out, a, b)
|
||||
tm4[1] = b[1] * a[1] + b[2] * a[5] + b[3] * a[9] + b[4] * a[13]
|
||||
tm4[2] = b[1] * a[2] + b[2] * a[6] + b[3] * a[10] + b[4] * a[14]
|
||||
tm4[3] = b[1] * a[3] + b[2] * a[7] + b[3] * a[11] + b[4] * a[15]
|
||||
tm4[4] = b[1] * a[4] + b[2] * a[8] + b[3] * a[12] + b[4] * a[16]
|
||||
tm4[5] = b[5] * a[1] + b[6] * a[5] + b[7] * a[9] + b[8] * a[13]
|
||||
tm4[6] = b[5] * a[2] + b[6] * a[6] + b[7] * a[10] + b[8] * a[14]
|
||||
tm4[7] = b[5] * a[3] + b[6] * a[7] + b[7] * a[11] + b[8] * a[15]
|
||||
tm4[8] = b[5] * a[4] + b[6] * a[8] + b[7] * a[12] + b[8] * a[16]
|
||||
tm4[9] = b[9] * a[1] + b[10] * a[5] + b[11] * a[9] + b[12] * a[13]
|
||||
tm4[10] = b[9] * a[2] + b[10] * a[6] + b[11] * a[10] + b[12] * a[14]
|
||||
tm4[11] = b[9] * a[3] + b[10] * a[7] + b[11] * a[11] + b[12] * a[15]
|
||||
tm4[12] = b[9] * a[4] + b[10] * a[8] + b[11] * a[12] + b[12] * a[16]
|
||||
tm4[13] = b[13] * a[1] + b[14] * a[5] + b[15] * a[9] + b[16] * a[13]
|
||||
tm4[14] = b[13] * a[2] + b[14] * a[6] + b[15] * a[10] + b[16] * a[14]
|
||||
tm4[15] = b[13] * a[3] + b[14] * a[7] + b[15] * a[11] + b[16] * a[15]
|
||||
tm4[16] = b[13] * a[4] + b[14] * a[8] + b[15] * a[12] + b[16] * a[16]
|
||||
|
||||
for i = 1, 16 do
|
||||
out[i] = tm4[i]
|
||||
end
|
||||
end
|
||||
|
||||
--- Multiply N matrices.
|
||||
-- @tparam mat4 out Matrix to store the result
|
||||
-- @tparam mat4 or {mat4, ...} left hand operand(s)
|
||||
-- @tparam mat4 right hand operand if a is not table
|
||||
-- @treturn mat4 out multiplied matrix result
|
||||
function mat4.mul(out, a, b)
|
||||
if mat4.is_mat4(a) then
|
||||
mul_internal(out, a, b)
|
||||
return out
|
||||
end
|
||||
if #a == 0 then
|
||||
identity(out)
|
||||
elseif #a == 1 then
|
||||
-- only one matrix, just copy
|
||||
for i = 1, 16 do
|
||||
out[i] = a[1][i]
|
||||
end
|
||||
else
|
||||
local ma = a[1]
|
||||
local mb = a[2]
|
||||
for i = 2, #a do
|
||||
mul_internal(out, ma, mb)
|
||||
ma = out
|
||||
end
|
||||
end
|
||||
return out
|
||||
end
|
||||
|
||||
--- Multiply a matrix and a vec3, with perspective division.
|
||||
-- This function uses an implicit 1 for the fourth component.
|
||||
-- @tparam vec3 out vec3 to store the result
|
||||
-- @tparam mat4 a Left hand operand
|
||||
-- @tparam vec3 b Right hand operand
|
||||
-- @treturn vec3 out
|
||||
function mat4.mul_vec3_perspective(out, a, b)
|
||||
local v4x = b.x * a[1] + b.y * a[5] + b.z * a[9] + a[13]
|
||||
local v4y = b.x * a[2] + b.y * a[6] + b.z * a[10] + a[14]
|
||||
local v4z = b.x * a[3] + b.y * a[7] + b.z * a[11] + a[15]
|
||||
local v4w = b.x * a[4] + b.y * a[8] + b.z * a[12] + a[16]
|
||||
local inv_w = 0
|
||||
if v4w ~= 0 then
|
||||
inv_w = utils.sign(v4w) / v4w
|
||||
end
|
||||
out.x = v4x * inv_w
|
||||
out.y = v4y * inv_w
|
||||
out.z = v4z * inv_w
|
||||
return out
|
||||
end
|
||||
|
||||
--- Multiply a matrix and a vec4.
|
||||
-- @tparam table out table to store the result
|
||||
-- @tparam mat4 a Left hand operand
|
||||
-- @tparam table b Right hand operand
|
||||
-- @treturn vec4 out
|
||||
function mat4.mul_vec4(out, a, b)
|
||||
tv4[1] = b[1] * a[1] + b[2] * a[5] + b [3] * a[9] + b[4] * a[13]
|
||||
tv4[2] = b[1] * a[2] + b[2] * a[6] + b [3] * a[10] + b[4] * a[14]
|
||||
tv4[3] = b[1] * a[3] + b[2] * a[7] + b [3] * a[11] + b[4] * a[15]
|
||||
tv4[4] = b[1] * a[4] + b[2] * a[8] + b [3] * a[12] + b[4] * a[16]
|
||||
|
||||
for i = 1, 4 do
|
||||
out[i] = tv4[i]
|
||||
end
|
||||
|
||||
return out
|
||||
end
|
||||
|
||||
--- Invert a matrix.
|
||||
-- @tparam mat4 out Matrix to store the result
|
||||
-- @tparam mat4 a Matrix to invert
|
||||
-- @treturn mat4 out
|
||||
function mat4.invert(out, a)
|
||||
tm4[1] = a[6] * a[11] * a[16] - a[6] * a[12] * a[15] - a[10] * a[7] * a[16] + a[10] * a[8] * a[15] + a[14] * a[7] * a[12] - a[14] * a[8] * a[11]
|
||||
tm4[2] = -a[2] * a[11] * a[16] + a[2] * a[12] * a[15] + a[10] * a[3] * a[16] - a[10] * a[4] * a[15] - a[14] * a[3] * a[12] + a[14] * a[4] * a[11]
|
||||
tm4[3] = a[2] * a[7] * a[16] - a[2] * a[8] * a[15] - a[6] * a[3] * a[16] + a[6] * a[4] * a[15] + a[14] * a[3] * a[8] - a[14] * a[4] * a[7]
|
||||
tm4[4] = -a[2] * a[7] * a[12] + a[2] * a[8] * a[11] + a[6] * a[3] * a[12] - a[6] * a[4] * a[11] - a[10] * a[3] * a[8] + a[10] * a[4] * a[7]
|
||||
tm4[5] = -a[5] * a[11] * a[16] + a[5] * a[12] * a[15] + a[9] * a[7] * a[16] - a[9] * a[8] * a[15] - a[13] * a[7] * a[12] + a[13] * a[8] * a[11]
|
||||
tm4[6] = a[1] * a[11] * a[16] - a[1] * a[12] * a[15] - a[9] * a[3] * a[16] + a[9] * a[4] * a[15] + a[13] * a[3] * a[12] - a[13] * a[4] * a[11]
|
||||
tm4[7] = -a[1] * a[7] * a[16] + a[1] * a[8] * a[15] + a[5] * a[3] * a[16] - a[5] * a[4] * a[15] - a[13] * a[3] * a[8] + a[13] * a[4] * a[7]
|
||||
tm4[8] = a[1] * a[7] * a[12] - a[1] * a[8] * a[11] - a[5] * a[3] * a[12] + a[5] * a[4] * a[11] + a[9] * a[3] * a[8] - a[9] * a[4] * a[7]
|
||||
tm4[9] = a[5] * a[10] * a[16] - a[5] * a[12] * a[14] - a[9] * a[6] * a[16] + a[9] * a[8] * a[14] + a[13] * a[6] * a[12] - a[13] * a[8] * a[10]
|
||||
tm4[10] = -a[1] * a[10] * a[16] + a[1] * a[12] * a[14] + a[9] * a[2] * a[16] - a[9] * a[4] * a[14] - a[13] * a[2] * a[12] + a[13] * a[4] * a[10]
|
||||
tm4[11] = a[1] * a[6] * a[16] - a[1] * a[8] * a[14] - a[5] * a[2] * a[16] + a[5] * a[4] * a[14] + a[13] * a[2] * a[8] - a[13] * a[4] * a[6]
|
||||
tm4[12] = -a[1] * a[6] * a[12] + a[1] * a[8] * a[10] + a[5] * a[2] * a[12] - a[5] * a[4] * a[10] - a[9] * a[2] * a[8] + a[9] * a[4] * a[6]
|
||||
tm4[13] = -a[5] * a[10] * a[15] + a[5] * a[11] * a[14] + a[9] * a[6] * a[15] - a[9] * a[7] * a[14] - a[13] * a[6] * a[11] + a[13] * a[7] * a[10]
|
||||
tm4[14] = a[1] * a[10] * a[15] - a[1] * a[11] * a[14] - a[9] * a[2] * a[15] + a[9] * a[3] * a[14] + a[13] * a[2] * a[11] - a[13] * a[3] * a[10]
|
||||
tm4[15] = -a[1] * a[6] * a[15] + a[1] * a[7] * a[14] + a[5] * a[2] * a[15] - a[5] * a[3] * a[14] - a[13] * a[2] * a[7] + a[13] * a[3] * a[6]
|
||||
tm4[16] = a[1] * a[6] * a[11] - a[1] * a[7] * a[10] - a[5] * a[2] * a[11] + a[5] * a[3] * a[10] + a[9] * a[2] * a[7] - a[9] * a[3] * a[6]
|
||||
|
||||
local det = a[1] * tm4[1] + a[2] * tm4[5] + a[3] * tm4[9] + a[4] * tm4[13]
|
||||
|
||||
if det == 0 then return a end
|
||||
|
||||
det = 1 / det
|
||||
|
||||
for i = 1, 16 do
|
||||
out[i] = tm4[i] * det
|
||||
end
|
||||
|
||||
return out
|
||||
end
|
||||
|
||||
--- Scale a matrix.
|
||||
-- @tparam mat4 out Matrix to store the result
|
||||
-- @tparam mat4 a Matrix to scale
|
||||
-- @tparam vec3 s Scalar
|
||||
-- @treturn mat4 out
|
||||
function mat4.scale(out, a, s)
|
||||
identity(tmp)
|
||||
tmp[1] = s.x
|
||||
tmp[6] = s.y
|
||||
tmp[11] = s.z
|
||||
|
||||
return out:mul(tmp, a)
|
||||
end
|
||||
|
||||
--- Rotate a matrix.
|
||||
-- @tparam mat4 out Matrix to store the result
|
||||
-- @tparam mat4 a Matrix to rotate
|
||||
-- @tparam number angle Angle to rotate by (in radians)
|
||||
-- @tparam vec3 axis Axis to rotate on
|
||||
-- @treturn mat4 out
|
||||
function mat4.rotate(out, a, angle, axis)
|
||||
if type(angle) == "table" or type(angle) == "cdata" then
|
||||
angle, axis = angle:to_angle_axis()
|
||||
end
|
||||
|
||||
local l = axis:len()
|
||||
|
||||
if l == 0 then
|
||||
return a
|
||||
end
|
||||
|
||||
local x, y, z = axis.x / l, axis.y / l, axis.z / l
|
||||
local c = cos(angle)
|
||||
local s = sin(angle)
|
||||
|
||||
identity(tmp)
|
||||
tmp[1] = x * x * (1 - c) + c
|
||||
tmp[2] = y * x * (1 - c) + z * s
|
||||
tmp[3] = x * z * (1 - c) - y * s
|
||||
tmp[5] = x * y * (1 - c) - z * s
|
||||
tmp[6] = y * y * (1 - c) + c
|
||||
tmp[7] = y * z * (1 - c) + x * s
|
||||
tmp[9] = x * z * (1 - c) + y * s
|
||||
tmp[10] = y * z * (1 - c) - x * s
|
||||
tmp[11] = z * z * (1 - c) + c
|
||||
|
||||
return out:mul(tmp, a)
|
||||
end
|
||||
|
||||
--- Translate a matrix.
|
||||
-- @tparam mat4 out Matrix to store the result
|
||||
-- @tparam mat4 a Matrix to translate
|
||||
-- @tparam vec3 t Translation vector
|
||||
-- @treturn mat4 out
|
||||
function mat4.translate(out, a, t)
|
||||
identity(tmp)
|
||||
tmp[13] = t.x
|
||||
tmp[14] = t.y
|
||||
tmp[15] = t.z
|
||||
|
||||
return out:mul(tmp, a)
|
||||
end
|
||||
|
||||
--- Shear a matrix.
|
||||
-- @tparam mat4 out Matrix to store the result
|
||||
-- @tparam mat4 a Matrix to translate
|
||||
-- @tparam number yx
|
||||
-- @tparam number zx
|
||||
-- @tparam number xy
|
||||
-- @tparam number zy
|
||||
-- @tparam number xz
|
||||
-- @tparam number yz
|
||||
-- @treturn mat4 out
|
||||
function mat4.shear(out, a, yx, zx, xy, zy, xz, yz)
|
||||
identity(tmp)
|
||||
tmp[2] = yx or 0
|
||||
tmp[3] = zx or 0
|
||||
tmp[5] = xy or 0
|
||||
tmp[7] = zy or 0
|
||||
tmp[9] = xz or 0
|
||||
tmp[10] = yz or 0
|
||||
|
||||
return out:mul(tmp, a)
|
||||
end
|
||||
|
||||
--- Reflect a matrix across a plane.
|
||||
-- @tparam mat4 Matrix to store the result
|
||||
-- @tparam a Matrix to reflect
|
||||
-- @tparam vec3 position A point on the plane
|
||||
-- @tparam vec3 normal The (normalized!) normal vector of the plane
|
||||
function mat4.reflect(out, a, position, normal)
|
||||
local nx, ny, nz = normal:unpack()
|
||||
local d = -position:dot(normal)
|
||||
tmp[1] = 1 - 2 * nx ^ 2
|
||||
tmp[2] = 2 * nx * ny
|
||||
tmp[3] = -2 * nx * nz
|
||||
tmp[4] = 0
|
||||
tmp[5] = -2 * nx * ny
|
||||
tmp[6] = 1 - 2 * ny ^ 2
|
||||
tmp[7] = -2 * ny * nz
|
||||
tmp[8] = 0
|
||||
tmp[9] = -2 * nx * nz
|
||||
tmp[10] = -2 * ny * nz
|
||||
tmp[11] = 1 - 2 * nz ^ 2
|
||||
tmp[12] = 0
|
||||
tmp[13] = -2 * nx * d
|
||||
tmp[14] = -2 * ny * d
|
||||
tmp[15] = -2 * nz * d
|
||||
tmp[16] = 1
|
||||
|
||||
return out:mul(tmp, a)
|
||||
end
|
||||
|
||||
--- Transform matrix to look at a point.
|
||||
-- @tparam mat4 out Matrix to store result
|
||||
-- @tparam vec3 eye Location of viewer's view plane
|
||||
-- @tparam vec3 center Location of object to view
|
||||
-- @tparam vec3 up Up direction
|
||||
-- @treturn mat4 out
|
||||
function mat4.look_at(out, eye, look_at, up)
|
||||
local z_axis = (eye - look_at):normalize()
|
||||
local x_axis = up:cross(z_axis):normalize()
|
||||
local y_axis = z_axis:cross(x_axis)
|
||||
out[1] = x_axis.x
|
||||
out[2] = y_axis.x
|
||||
out[3] = z_axis.x
|
||||
out[4] = 0
|
||||
out[5] = x_axis.y
|
||||
out[6] = y_axis.y
|
||||
out[7] = z_axis.y
|
||||
out[8] = 0
|
||||
out[9] = x_axis.z
|
||||
out[10] = y_axis.z
|
||||
out[11] = z_axis.z
|
||||
out[12] = 0
|
||||
out[13] = -out[ 1]*eye.x - out[4+1]*eye.y - out[8+1]*eye.z
|
||||
out[14] = -out[ 2]*eye.x - out[4+2]*eye.y - out[8+2]*eye.z
|
||||
out[15] = -out[ 3]*eye.x - out[4+3]*eye.y - out[8+3]*eye.z
|
||||
out[16] = -out[ 4]*eye.x - out[4+4]*eye.y - out[8+4]*eye.z + 1
|
||||
return out
|
||||
end
|
||||
|
||||
--- Transform matrix to target a point.
|
||||
-- @tparam mat4 out Matrix to store result
|
||||
-- @tparam vec3 eye Location of viewer's view plane
|
||||
-- @tparam vec3 center Location of object to view
|
||||
-- @tparam vec3 up Up direction
|
||||
-- @treturn mat4 out
|
||||
function mat4.target(out, from, to, up)
|
||||
local z_axis = (from - to):normalize()
|
||||
local x_axis = up:cross(z_axis):normalize()
|
||||
local y_axis = z_axis:cross(x_axis)
|
||||
out[1] = x_axis.x
|
||||
out[2] = x_axis.y
|
||||
out[3] = x_axis.z
|
||||
out[4] = 0
|
||||
out[5] = y_axis.x
|
||||
out[6] = y_axis.y
|
||||
out[7] = y_axis.z
|
||||
out[8] = 0
|
||||
out[9] = z_axis.x
|
||||
out[10] = z_axis.y
|
||||
out[11] = z_axis.z
|
||||
out[12] = 0
|
||||
out[13] = from.x
|
||||
out[14] = from.y
|
||||
out[15] = from.z
|
||||
out[16] = 1
|
||||
return out
|
||||
end
|
||||
|
||||
--- Transpose a matrix.
|
||||
-- @tparam mat4 out Matrix to store the result
|
||||
-- @tparam mat4 a Matrix to transpose
|
||||
-- @treturn mat4 out
|
||||
function mat4.transpose(out, a)
|
||||
tm4[1] = a[1]
|
||||
tm4[2] = a[5]
|
||||
tm4[3] = a[9]
|
||||
tm4[4] = a[13]
|
||||
tm4[5] = a[2]
|
||||
tm4[6] = a[6]
|
||||
tm4[7] = a[10]
|
||||
tm4[8] = a[14]
|
||||
tm4[9] = a[3]
|
||||
tm4[10] = a[7]
|
||||
tm4[11] = a[11]
|
||||
tm4[12] = a[15]
|
||||
tm4[13] = a[4]
|
||||
tm4[14] = a[8]
|
||||
tm4[15] = a[12]
|
||||
tm4[16] = a[16]
|
||||
|
||||
for i = 1, 16 do
|
||||
out[i] = tm4[i]
|
||||
end
|
||||
|
||||
return out
|
||||
end
|
||||
|
||||
--- Project a point into screen space
|
||||
-- @tparam vec3 obj Object position in world space
|
||||
-- @tparam mat4 mvp Projection matrix
|
||||
-- @tparam table viewport XYWH of viewport
|
||||
-- @treturn vec3 win
|
||||
function mat4.project(obj, mvp, viewport)
|
||||
local point = mat4.mul_vec3_perspective(vec3(), mvp, obj)
|
||||
point.x = point.x * 0.5 + 0.5
|
||||
point.y = point.y * 0.5 + 0.5
|
||||
point.z = point.z * 0.5 + 0.5
|
||||
point.x = point.x * viewport[3] + viewport[1]
|
||||
point.y = point.y * viewport[4] + viewport[2]
|
||||
return point
|
||||
end
|
||||
|
||||
--- Unproject a point from screen space to world space.
|
||||
-- @tparam vec3 win Object position in screen space
|
||||
-- @tparam mat4 mvp Projection matrix
|
||||
-- @tparam table viewport XYWH of viewport
|
||||
-- @treturn vec3 obj
|
||||
function mat4.unproject(win, mvp, viewport)
|
||||
local point = vec3.clone(win)
|
||||
|
||||
-- 0..n -> 0..1
|
||||
point.x = (point.x - viewport[1]) / viewport[3]
|
||||
point.y = (point.y - viewport[2]) / viewport[4]
|
||||
|
||||
-- 0..1 -> -1..1
|
||||
point.x = point.x * 2 - 1
|
||||
point.y = point.y * 2 - 1
|
||||
point.z = point.z * 2 - 1
|
||||
|
||||
return mat4.mul_vec3_perspective(point, tmp:invert(mvp), point)
|
||||
end
|
||||
|
||||
--- Return a boolean showing if a table is or is not a mat4.
|
||||
-- @tparam mat4 a Matrix to be tested
|
||||
-- @treturn boolean is_mat4
|
||||
function mat4.is_mat4(a)
|
||||
if type(a) == "cdata" then
|
||||
return ffi.istype("cpml_mat4", a)
|
||||
end
|
||||
|
||||
if type(a) ~= "table" then
|
||||
return false
|
||||
end
|
||||
|
||||
for i = 1, 16 do
|
||||
if type(a[i]) ~= "number" then
|
||||
return false
|
||||
end
|
||||
end
|
||||
|
||||
return true
|
||||
end
|
||||
|
||||
--- Return whether any component is NaN
|
||||
-- @tparam mat4 a Matrix to be tested
|
||||
-- @treturn boolean if any component is NaN
|
||||
function vec2.has_nan(a)
|
||||
for i = 1, 16 do
|
||||
if private.is_nan(a[i]) then
|
||||
return true
|
||||
end
|
||||
end
|
||||
return false
|
||||
end
|
||||
|
||||
--- Return a formatted string.
|
||||
-- @tparam mat4 a Matrix to be turned into a string
|
||||
-- @treturn string formatted
|
||||
function mat4.to_string(a)
|
||||
local str = "[ "
|
||||
for i = 1, 16 do
|
||||
str = str .. string.format("%+0.3f", a[i])
|
||||
if i < 16 then
|
||||
str = str .. ", "
|
||||
end
|
||||
end
|
||||
str = str .. " ]"
|
||||
return str
|
||||
end
|
||||
|
||||
--- Convert a matrix to row vec4s.
|
||||
-- @tparam mat4 a Matrix to be converted
|
||||
-- @treturn table vec4s
|
||||
function mat4.to_vec4s(a)
|
||||
return {
|
||||
{ a[1], a[2], a[3], a[4] },
|
||||
{ a[5], a[6], a[7], a[8] },
|
||||
{ a[9], a[10], a[11], a[12] },
|
||||
{ a[13], a[14], a[15], a[16] }
|
||||
}
|
||||
end
|
||||
|
||||
--- Convert a matrix to col vec4s.
|
||||
-- @tparam mat4 a Matrix to be converted
|
||||
-- @treturn table vec4s
|
||||
function mat4.to_vec4s_cols(a)
|
||||
return {
|
||||
{ a[1], a[5], a[9], a[13] },
|
||||
{ a[2], a[6], a[10], a[14] },
|
||||
{ a[3], a[7], a[11], a[15] },
|
||||
{ a[4], a[8], a[12], a[16] }
|
||||
}
|
||||
end
|
||||
|
||||
-- http://www.euclideanspace.com/maths/geometry/rotations/conversions/matrixToQuaternion/
|
||||
--- Convert a matrix to a quaternion.
|
||||
-- @tparam mat4 a Matrix to be converted
|
||||
-- @treturn quat out
|
||||
function mat4.to_quat(a)
|
||||
identity(tmp):transpose(a)
|
||||
|
||||
local w = sqrt(1 + tmp[1] + tmp[6] + tmp[11]) / 2
|
||||
local scale = w * 4
|
||||
local q = quat.new(
|
||||
tmp[10] - tmp[7] / scale,
|
||||
tmp[3] - tmp[9] / scale,
|
||||
tmp[5] - tmp[2] / scale,
|
||||
w
|
||||
)
|
||||
|
||||
return q:normalize(q)
|
||||
end
|
||||
|
||||
-- http://www.crownandcutlass.com/features/technicaldetails/frustum.html
|
||||
--- Convert a matrix to a frustum.
|
||||
-- @tparam mat4 a Matrix to be converted (projection * view)
|
||||
-- @tparam boolean infinite Infinite removes the far plane
|
||||
-- @treturn frustum out
|
||||
function mat4.to_frustum(a, infinite)
|
||||
local t
|
||||
local frustum = {}
|
||||
|
||||
-- Extract the LEFT plane
|
||||
frustum.left = {}
|
||||
frustum.left.a = a[4] + a[1]
|
||||
frustum.left.b = a[8] + a[5]
|
||||
frustum.left.c = a[12] + a[9]
|
||||
frustum.left.d = a[16] + a[13]
|
||||
|
||||
-- Normalize the result
|
||||
t = sqrt(frustum.left.a * frustum.left.a + frustum.left.b * frustum.left.b + frustum.left.c * frustum.left.c)
|
||||
frustum.left.a = frustum.left.a / t
|
||||
frustum.left.b = frustum.left.b / t
|
||||
frustum.left.c = frustum.left.c / t
|
||||
frustum.left.d = frustum.left.d / t
|
||||
|
||||
-- Extract the RIGHT plane
|
||||
frustum.right = {}
|
||||
frustum.right.a = a[4] - a[1]
|
||||
frustum.right.b = a[8] - a[5]
|
||||
frustum.right.c = a[12] - a[9]
|
||||
frustum.right.d = a[16] - a[13]
|
||||
|
||||
-- Normalize the result
|
||||
t = sqrt(frustum.right.a * frustum.right.a + frustum.right.b * frustum.right.b + frustum.right.c * frustum.right.c)
|
||||
frustum.right.a = frustum.right.a / t
|
||||
frustum.right.b = frustum.right.b / t
|
||||
frustum.right.c = frustum.right.c / t
|
||||
frustum.right.d = frustum.right.d / t
|
||||
|
||||
-- Extract the BOTTOM plane
|
||||
frustum.bottom = {}
|
||||
frustum.bottom.a = a[4] + a[2]
|
||||
frustum.bottom.b = a[8] + a[6]
|
||||
frustum.bottom.c = a[12] + a[10]
|
||||
frustum.bottom.d = a[16] + a[14]
|
||||
|
||||
-- Normalize the result
|
||||
t = sqrt(frustum.bottom.a * frustum.bottom.a + frustum.bottom.b * frustum.bottom.b + frustum.bottom.c * frustum.bottom.c)
|
||||
frustum.bottom.a = frustum.bottom.a / t
|
||||
frustum.bottom.b = frustum.bottom.b / t
|
||||
frustum.bottom.c = frustum.bottom.c / t
|
||||
frustum.bottom.d = frustum.bottom.d / t
|
||||
|
||||
-- Extract the TOP plane
|
||||
frustum.top = {}
|
||||
frustum.top.a = a[4] - a[2]
|
||||
frustum.top.b = a[8] - a[6]
|
||||
frustum.top.c = a[12] - a[10]
|
||||
frustum.top.d = a[16] - a[14]
|
||||
|
||||
-- Normalize the result
|
||||
t = sqrt(frustum.top.a * frustum.top.a + frustum.top.b * frustum.top.b + frustum.top.c * frustum.top.c)
|
||||
frustum.top.a = frustum.top.a / t
|
||||
frustum.top.b = frustum.top.b / t
|
||||
frustum.top.c = frustum.top.c / t
|
||||
frustum.top.d = frustum.top.d / t
|
||||
|
||||
-- Extract the NEAR plane
|
||||
frustum.near = {}
|
||||
frustum.near.a = a[4] + a[3]
|
||||
frustum.near.b = a[8] + a[7]
|
||||
frustum.near.c = a[12] + a[11]
|
||||
frustum.near.d = a[16] + a[15]
|
||||
|
||||
-- Normalize the result
|
||||
t = sqrt(frustum.near.a * frustum.near.a + frustum.near.b * frustum.near.b + frustum.near.c * frustum.near.c)
|
||||
frustum.near.a = frustum.near.a / t
|
||||
frustum.near.b = frustum.near.b / t
|
||||
frustum.near.c = frustum.near.c / t
|
||||
frustum.near.d = frustum.near.d / t
|
||||
|
||||
if not infinite then
|
||||
-- Extract the FAR plane
|
||||
frustum.far = {}
|
||||
frustum.far.a = a[4] - a[3]
|
||||
frustum.far.b = a[8] - a[7]
|
||||
frustum.far.c = a[12] - a[11]
|
||||
frustum.far.d = a[16] - a[15]
|
||||
|
||||
-- Normalize the result
|
||||
t = sqrt(frustum.far.a * frustum.far.a + frustum.far.b * frustum.far.b + frustum.far.c * frustum.far.c)
|
||||
frustum.far.a = frustum.far.a / t
|
||||
frustum.far.b = frustum.far.b / t
|
||||
frustum.far.c = frustum.far.c / t
|
||||
frustum.far.d = frustum.far.d / t
|
||||
end
|
||||
|
||||
return frustum
|
||||
end
|
||||
|
||||
function mat4_mt.__index(t, k)
|
||||
if type(t) == "cdata" then
|
||||
if type(k) == "number" then
|
||||
return t._m[k-1]
|
||||
end
|
||||
end
|
||||
|
||||
return rawget(mat4, k)
|
||||
end
|
||||
|
||||
function mat4_mt.__newindex(t, k, v)
|
||||
if type(t) == "cdata" then
|
||||
if type(k) == "number" then
|
||||
t._m[k-1] = v
|
||||
end
|
||||
end
|
||||
end
|
||||
|
||||
mat4_mt.__tostring = mat4.to_string
|
||||
|
||||
function mat4_mt.__call(_, a)
|
||||
return mat4.new(a)
|
||||
end
|
||||
|
||||
function mat4_mt.__unm(a)
|
||||
return new():invert(a)
|
||||
end
|
||||
|
||||
function mat4_mt.__eq(a, b)
|
||||
if not mat4.is_mat4(a) or not mat4.is_mat4(b) then
|
||||
return false
|
||||
end
|
||||
|
||||
for i = 1, 16 do
|
||||
if not utils.tolerance(b[i]-a[i], constants.FLT_EPSILON) then
|
||||
return false
|
||||
end
|
||||
end
|
||||
|
||||
return true
|
||||
end
|
||||
|
||||
function mat4_mt.__mul(a, b)
|
||||
precond.assert(mat4.is_mat4(a), "__mul: Wrong argument type '%s' for left hand operand. (<cpml.mat4> expected)", type(a))
|
||||
|
||||
if vec3.is_vec3(b) then
|
||||
return mat4.mul_vec3_perspective(vec3(), a, b)
|
||||
end
|
||||
|
||||
assert(mat4.is_mat4(b) or #b == 4, "__mul: Wrong argument type for right hand operand. (<cpml.mat4> or table #4 expected)")
|
||||
|
||||
if mat4.is_mat4(b) then
|
||||
return new():mul(a, b)
|
||||
end
|
||||
|
||||
return mat4.mul_vec4({}, a, b)
|
||||
end
|
||||
|
||||
if status then
|
||||
xpcall(function() -- Allow this to silently fail; assume failure means someone messed with package.loaded
|
||||
ffi.metatype(new, mat4_mt)
|
||||
end, function() end)
|
||||
end
|
||||
|
||||
return setmetatable({}, mat4_mt)
|
51
libs/cpml/mesh.lua
Normal file
51
libs/cpml/mesh.lua
Normal file
@ -0,0 +1,51 @@
|
||||
--- Mesh utilities
|
||||
-- @module mesh
|
||||
|
||||
local modules = (...):gsub('%.[^%.]+$', '') .. "."
|
||||
local vec3 = require(modules .. "vec3")
|
||||
local mesh = {}
|
||||
|
||||
-- vertices is an arbitrary list of vec3s
|
||||
function mesh.average(vertices)
|
||||
local out = vec3()
|
||||
for _, v in ipairs(vertices) do
|
||||
out = out + v
|
||||
end
|
||||
return out / #vertices
|
||||
end
|
||||
|
||||
-- triangle[1] is a vec3
|
||||
-- triangle[2] is a vec3
|
||||
-- triangle[3] is a vec3
|
||||
function mesh.normal(triangle)
|
||||
local ba = triangle[2] - triangle[1]
|
||||
local ca = triangle[3] - triangle[1]
|
||||
return ba:cross(ca):normalize()
|
||||
end
|
||||
|
||||
-- triangle[1] is a vec3
|
||||
-- triangle[2] is a vec3
|
||||
-- triangle[3] is a vec3
|
||||
function mesh.plane_from_triangle(triangle)
|
||||
return {
|
||||
origin = triangle[1],
|
||||
normal = mesh.normal(triangle)
|
||||
}
|
||||
end
|
||||
|
||||
-- plane.origin is a vec3
|
||||
-- plane.normal is a vec3
|
||||
-- direction is a vec3
|
||||
function mesh.is_front_facing(plane, direction)
|
||||
return plane.normal:dot(direction) >= 0
|
||||
end
|
||||
|
||||
-- point is a vec3
|
||||
-- plane.origin is a vec3
|
||||
-- plane.normal is a vec3
|
||||
-- plane.dot is a number
|
||||
function mesh.signed_distance(point, plane)
|
||||
return point:dot(plane.normal) - plane.normal:dot(plane.origin)
|
||||
end
|
||||
|
||||
return mesh
|
634
libs/cpml/octree.lua
Normal file
634
libs/cpml/octree.lua
Normal file
@ -0,0 +1,634 @@
|
||||
-- https://github.com/Nition/UnityOctree
|
||||
-- https://github.com/Nition/UnityOctree/blob/master/LICENCE
|
||||
-- https://github.com/Nition/UnityOctree/blob/master/Scripts/BoundsOctree.cs
|
||||
-- https://github.com/Nition/UnityOctree/blob/master/Scripts/BoundsOctreeNode.cs
|
||||
|
||||
--- Octree
|
||||
-- @module octree
|
||||
|
||||
local modules = (...):gsub('%.[^%.]+$', '') .. "."
|
||||
local intersect = require(modules .. "intersect")
|
||||
local mat4 = require(modules .. "mat4")
|
||||
local utils = require(modules .. "utils")
|
||||
local vec3 = require(modules .. "vec3")
|
||||
local Octree = {}
|
||||
local OctreeNode = {}
|
||||
local Node
|
||||
|
||||
Octree.__index = Octree
|
||||
OctreeNode.__index = OctreeNode
|
||||
|
||||
--== Octree ==--
|
||||
|
||||
--- Constructor for the bounds octree.
|
||||
-- @param initialWorldSize Size of the sides of the initial node, in metres. The octree will never shrink smaller than this
|
||||
-- @param initialWorldPos Position of the centre of the initial node
|
||||
-- @param minNodeSize Nodes will stop splitting if the new nodes would be smaller than this (metres)
|
||||
-- @param looseness Clamped between 1 and 2. Values > 1 let nodes overlap
|
||||
local function new(initialWorldSize, initialWorldPos, minNodeSize, looseness)
|
||||
local tree = setmetatable({}, Octree)
|
||||
|
||||
if minNodeSize > initialWorldSize then
|
||||
print("Minimum node size must be at least as big as the initial world size. Was: " .. minNodeSize .. " Adjusted to: " .. initialWorldSize)
|
||||
minNodeSize = initialWorldSize
|
||||
end
|
||||
|
||||
-- The total amount of objects currently in the tree
|
||||
tree.count = 0
|
||||
|
||||
-- Size that the octree was on creation
|
||||
tree.initialSize = initialWorldSize
|
||||
|
||||
-- Minimum side length that a node can be - essentially an alternative to having a max depth
|
||||
tree.minSize = minNodeSize
|
||||
|
||||
-- Should be a value between 1 and 2. A multiplier for the base size of a node.
|
||||
-- 1.0 is a "normal" octree, while values > 1 have overlap
|
||||
tree.looseness = utils.clamp(looseness, 1, 2)
|
||||
|
||||
-- Root node of the octree
|
||||
tree.rootNode = Node(tree.initialSize, tree.minSize, tree.looseness, initialWorldPos)
|
||||
|
||||
return tree
|
||||
end
|
||||
|
||||
--- Used when growing the octree. Works out where the old root node would fit inside a new, larger root node.
|
||||
-- @param xDir X direction of growth. 1 or -1
|
||||
-- @param yDir Y direction of growth. 1 or -1
|
||||
-- @param zDir Z direction of growth. 1 or -1
|
||||
-- @return Octant where the root node should be
|
||||
local function get_root_pos_index(xDir, yDir, zDir)
|
||||
local result = xDir > 0 and 1 or 0
|
||||
if yDir < 0 then return result + 4 end
|
||||
if zDir > 0 then return result + 2 end
|
||||
end
|
||||
|
||||
--- Add an object.
|
||||
-- @param obj Object to add
|
||||
-- @param objBounds 3D bounding box around the object
|
||||
function Octree:add(obj, objBounds)
|
||||
-- Add object or expand the octree until it can be added
|
||||
local count = 0 -- Safety check against infinite/excessive growth
|
||||
|
||||
while not self.rootNode:add(obj, objBounds) do
|
||||
count = count + 1
|
||||
self:grow(objBounds.center - self.rootNode.center)
|
||||
|
||||
if count > 20 then
|
||||
print("Aborted Add operation as it seemed to be going on forever (" .. count - 1 .. ") attempts at growing the octree.")
|
||||
return
|
||||
end
|
||||
|
||||
self.count = self.count + 1
|
||||
end
|
||||
end
|
||||
|
||||
--- Remove an object. Makes the assumption that the object only exists once in the tree.
|
||||
-- @param obj Object to remove
|
||||
-- @return bool True if the object was removed successfully
|
||||
function Octree:remove(obj)
|
||||
local removed = self.rootNode:remove(obj)
|
||||
|
||||
-- See if we can shrink the octree down now that we've removed the item
|
||||
if removed then
|
||||
self.count = self.count - 1
|
||||
self:shrink()
|
||||
end
|
||||
|
||||
return removed
|
||||
end
|
||||
|
||||
--- Check if the specified bounds intersect with anything in the tree. See also: get_colliding.
|
||||
-- @param checkBounds bounds to check
|
||||
-- @return bool True if there was a collision
|
||||
function Octree:is_colliding(checkBounds)
|
||||
return self.rootNode:is_colliding(checkBounds)
|
||||
end
|
||||
|
||||
--- Returns an array of objects that intersect with the specified bounds, if any. Otherwise returns an empty array. See also: is_colliding.
|
||||
-- @param checkBounds bounds to check
|
||||
-- @return table Objects that intersect with the specified bounds
|
||||
function Octree:get_colliding(checkBounds)
|
||||
return self.rootNode:get_colliding(checkBounds)
|
||||
end
|
||||
|
||||
--- Cast a ray through the node and its children
|
||||
-- @param ray Ray with a position and a direction
|
||||
-- @param func Function to execute on any objects within child nodes
|
||||
-- @param out Table to store results of func in
|
||||
-- @return boolean True if an intersect detected
|
||||
function Octree:cast_ray(ray, func, out)
|
||||
assert(func)
|
||||
return self.rootNode:cast_ray(ray, func, out)
|
||||
end
|
||||
|
||||
--- Draws node boundaries visually for debugging.
|
||||
function Octree:draw_bounds(cube)
|
||||
self.rootNode:draw_bounds(cube)
|
||||
end
|
||||
|
||||
--- Draws the bounds of all objects in the tree visually for debugging.
|
||||
function Octree:draw_objects(cube, filter)
|
||||
self.rootNode:draw_objects(cube, filter)
|
||||
end
|
||||
|
||||
--- Grow the octree to fit in all objects.
|
||||
-- @param direction Direction to grow
|
||||
function Octree:grow(direction)
|
||||
local xDirection = direction.x >= 0 and 1 or -1
|
||||
local yDirection = direction.y >= 0 and 1 or -1
|
||||
local zDirection = direction.z >= 0 and 1 or -1
|
||||
|
||||
local oldRoot = self.rootNode
|
||||
local half = self.rootNode.baseLength / 2
|
||||
local newLength = self.rootNode.baseLength * 2
|
||||
local newCenter = self.rootNode.center + vec3(xDirection * half, yDirection * half, zDirection * half)
|
||||
|
||||
-- Create a new, bigger octree root node
|
||||
self.rootNode = Node(newLength, self.minSize, self.looseness, newCenter)
|
||||
|
||||
-- Create 7 new octree children to go with the old root as children of the new root
|
||||
local rootPos = get_root_pos_index(xDirection, yDirection, zDirection)
|
||||
local children = {}
|
||||
|
||||
for i = 0, 7 do
|
||||
if i == rootPos then
|
||||
children[i+1] = oldRoot
|
||||
else
|
||||
xDirection = i % 2 == 0 and -1 or 1
|
||||
yDirection = i > 3 and -1 or 1
|
||||
zDirection = (i < 2 or (i > 3 and i < 6)) and -1 or 1
|
||||
children[i+1] = Node(self.rootNode.baseLength, self.minSize, self.looseness, newCenter + vec3(xDirection * half, yDirection * half, zDirection * half))
|
||||
end
|
||||
end
|
||||
|
||||
-- Attach the new children to the new root node
|
||||
self.rootNode:set_children(children)
|
||||
end
|
||||
|
||||
--- Shrink the octree if possible, else leave it the same.
|
||||
function Octree:shrink()
|
||||
self.rootNode = self.rootNode:shrink_if_possible(self.initialSize)
|
||||
end
|
||||
|
||||
--== Octree Node ==--
|
||||
|
||||
--- Constructor.
|
||||
-- @param baseLength Length of this node, not taking looseness into account
|
||||
-- @param minSize Minimum size of nodes in this octree
|
||||
-- @param looseness Multiplier for baseLengthVal to get the actual size
|
||||
-- @param center Centre position of this node
|
||||
local function new_node(baseLength, minSize, looseness, center)
|
||||
local node = setmetatable({}, OctreeNode)
|
||||
|
||||
-- Objects in this node
|
||||
node.objects = {}
|
||||
|
||||
-- Child nodes
|
||||
node.children = {}
|
||||
|
||||
-- If there are already numObjectsAllowed in a node, we split it into children
|
||||
-- A generally good number seems to be something around 8-15
|
||||
node.numObjectsAllowed = 8
|
||||
|
||||
node:set_values(baseLength, minSize, looseness, center)
|
||||
|
||||
return node
|
||||
end
|
||||
|
||||
local function new_bound(center, size)
|
||||
return {
|
||||
center = center,
|
||||
size = size,
|
||||
min = center - (size / 2),
|
||||
max = center + (size / 2)
|
||||
}
|
||||
end
|
||||
|
||||
--- Add an object.
|
||||
-- @param obj Object to add
|
||||
-- @param objBounds 3D bounding box around the object
|
||||
-- @return boolean True if the object fits entirely within this node
|
||||
function OctreeNode:add(obj, objBounds)
|
||||
if not intersect.encapsulate_aabb(self.bounds, objBounds) then
|
||||
return false
|
||||
end
|
||||
|
||||
-- We know it fits at this level if we've got this far
|
||||
-- Just add if few objects are here, or children would be below min size
|
||||
if #self.objects < self.numObjectsAllowed
|
||||
or self.baseLength / 2 < self.minSize then
|
||||
table.insert(self.objects, {
|
||||
data = obj,
|
||||
bounds = objBounds
|
||||
})
|
||||
else
|
||||
-- Fits at this level, but we can go deeper. Would it fit there?
|
||||
|
||||
local best_fit_child
|
||||
|
||||
-- Create the 8 children
|
||||
if #self.children == 0 then
|
||||
self:split()
|
||||
|
||||
if #self.children == 0 then
|
||||
print("Child creation failed for an unknown reason. Early exit.")
|
||||
return false
|
||||
end
|
||||
|
||||
-- Now that we have the new children, see if this node's existing objects would fit there
|
||||
for i = #self.objects, 1, -1 do
|
||||
local object = self.objects[i]
|
||||
-- Find which child the object is closest to based on where the
|
||||
-- object's center is located in relation to the octree's center.
|
||||
best_fit_child = self:best_fit_child(object.bounds)
|
||||
|
||||
-- Does it fit?
|
||||
if intersect.encapsulate_aabb(self.children[best_fit_child].bounds, object.bounds) then
|
||||
self.children[best_fit_child]:add(object.data, object.bounds) -- Go a level deeper
|
||||
table.remove(self.objects, i) -- Remove from here
|
||||
end
|
||||
end
|
||||
end
|
||||
|
||||
-- Now handle the new object we're adding now
|
||||
best_fit_child = self:best_fit_child(objBounds)
|
||||
|
||||
if intersect.encapsulate_aabb(self.children[best_fit_child].bounds, objBounds) then
|
||||
self.children[best_fit_child]:add(obj, objBounds)
|
||||
else
|
||||
table.insert(self.objects, {
|
||||
data = obj,
|
||||
bounds = objBounds
|
||||
})
|
||||
end
|
||||
end
|
||||
|
||||
return true
|
||||
end
|
||||
|
||||
--- Remove an object. Makes the assumption that the object only exists once in the tree.
|
||||
-- @param obj Object to remove
|
||||
-- @return boolean True if the object was removed successfully
|
||||
function OctreeNode:remove(obj)
|
||||
local removed = false
|
||||
|
||||
for i, object in ipairs(self.objects) do
|
||||
if object == obj then
|
||||
removed = table.remove(self.objects, i) and true or false
|
||||
break
|
||||
end
|
||||
end
|
||||
|
||||
if not removed then
|
||||
for _, child in ipairs(self.children) do
|
||||
removed = child:remove(obj)
|
||||
if removed then break end
|
||||
end
|
||||
end
|
||||
|
||||
if removed then
|
||||
-- Check if we should merge nodes now that we've removed an item
|
||||
if self:should_merge() then
|
||||
self:merge()
|
||||
end
|
||||
end
|
||||
|
||||
return removed
|
||||
end
|
||||
|
||||
--- Check if the specified bounds intersect with anything in the tree. See also: get_colliding.
|
||||
-- @param checkBounds Bounds to check
|
||||
-- @return boolean True if there was a collision
|
||||
function OctreeNode:is_colliding(checkBounds)
|
||||
-- Are the input bounds at least partially in this node?
|
||||
if not intersect.aabb_aabb(self.bounds, checkBounds) then
|
||||
return false
|
||||
end
|
||||
|
||||
-- Check against any objects in this node
|
||||
for _, object in ipairs(self.objects) do
|
||||
if intersect.aabb_aabb(object.bounds, checkBounds) then
|
||||
return true
|
||||
end
|
||||
end
|
||||
|
||||
-- Check children
|
||||
for _, child in ipairs(self.children) do
|
||||
if child:is_colliding(checkBounds) then
|
||||
return true
|
||||
end
|
||||
end
|
||||
|
||||
return false
|
||||
end
|
||||
|
||||
--- Returns an array of objects that intersect with the specified bounds, if any. Otherwise returns an empty array. See also: is_colliding.
|
||||
-- @param checkBounds Bounds to check. Passing by ref as it improve performance with structs
|
||||
-- @param results List results
|
||||
-- @return table Objects that intersect with the specified bounds
|
||||
function OctreeNode:get_colliding(checkBounds, results)
|
||||
results = results or {}
|
||||
|
||||
-- Are the input bounds at least partially in this node?
|
||||
if not intersect.aabb_aabb(self.bounds, checkBounds) then
|
||||
return results
|
||||
end
|
||||
|
||||
-- Check against any objects in this node
|
||||
for _, object in ipairs(self.objects) do
|
||||
if intersect.aabb_aabb(object.bounds, checkBounds) then
|
||||
table.insert(results, object.data)
|
||||
end
|
||||
end
|
||||
|
||||
-- Check children
|
||||
for _, child in ipairs(self.children) do
|
||||
results = child:get_colliding(checkBounds, results)
|
||||
end
|
||||
|
||||
return results
|
||||
end
|
||||
|
||||
--- Cast a ray through the node and its children
|
||||
-- @param ray Ray with a position and a direction
|
||||
-- @param func Function to execute on any objects within child nodes
|
||||
-- @param out Table to store results of func in
|
||||
-- @param depth (used internally)
|
||||
-- @return boolean True if an intersect is detected
|
||||
function OctreeNode:cast_ray(ray, func, out, depth)
|
||||
depth = depth or 1
|
||||
|
||||
if intersect.ray_aabb(ray, self.bounds) then
|
||||
if #self.objects > 0 then
|
||||
local hit = func(ray, self.objects, out)
|
||||
|
||||
if hit then
|
||||
return hit
|
||||
end
|
||||
end
|
||||
|
||||
for _, child in ipairs(self.children) do
|
||||
local hit = child:cast_ray(ray, func, out, depth + 1)
|
||||
|
||||
if hit then
|
||||
return hit
|
||||
end
|
||||
end
|
||||
end
|
||||
|
||||
return false
|
||||
end
|
||||
|
||||
--- Set the 8 children of this octree.
|
||||
-- @param childOctrees The 8 new child nodes
|
||||
function OctreeNode:set_children(childOctrees)
|
||||
if #childOctrees ~= 8 then
|
||||
print("Child octree array must be length 8. Was length: " .. #childOctrees)
|
||||
return
|
||||
end
|
||||
|
||||
self.children = childOctrees
|
||||
end
|
||||
|
||||
--- We can shrink the octree if:
|
||||
--- - This node is >= double minLength in length
|
||||
--- - All objects in the root node are within one octant
|
||||
--- - This node doesn't have children, or does but 7/8 children are empty
|
||||
--- We can also shrink it if there are no objects left at all!
|
||||
-- @param minLength Minimum dimensions of a node in this octree
|
||||
-- @return table The new root, or the existing one if we didn't shrink
|
||||
function OctreeNode:shrink_if_possible(minLength)
|
||||
if self.baseLength < 2 * minLength then
|
||||
return self
|
||||
end
|
||||
|
||||
if #self.objects == 0 and #self.children == 0 then
|
||||
return self
|
||||
end
|
||||
|
||||
-- Check objects in root
|
||||
local bestFit = 0
|
||||
|
||||
for i, object in ipairs(self.objects) do
|
||||
local newBestFit = self:best_fit_child(object.bounds)
|
||||
|
||||
if i == 1 or newBestFit == bestFit then
|
||||
-- In same octant as the other(s). Does it fit completely inside that octant?
|
||||
if intersect.encapsulate_aabb(self.childBounds[newBestFit], object.bounds) then
|
||||
if bestFit < 1 then
|
||||
bestFit = newBestFit
|
||||
end
|
||||
else
|
||||
-- Nope, so we can't reduce. Otherwise we continue
|
||||
return self
|
||||
end
|
||||
else
|
||||
return self -- Can't reduce - objects fit in different octants
|
||||
end
|
||||
end
|
||||
|
||||
-- Check objects in children if there are any
|
||||
if #self.children > 0 then
|
||||
local childHadContent = false
|
||||
|
||||
for i, child in ipairs(self.children) do
|
||||
if child:has_any_objects() then
|
||||
if childHadContent then
|
||||
return self -- Can't shrink - another child had content already
|
||||
end
|
||||
|
||||
if bestFit > 0 and bestFit ~= i then
|
||||
return self -- Can't reduce - objects in root are in a different octant to objects in child
|
||||
end
|
||||
|
||||
childHadContent = true
|
||||
bestFit = i
|
||||
end
|
||||
end
|
||||
end
|
||||
|
||||
-- Can reduce
|
||||
if #self.children == 0 then
|
||||
-- We don't have any children, so just shrink this node to the new size
|
||||
-- We already know that everything will still fit in it
|
||||
self:set_values(self.baseLength / 2, self.minSize, self.looseness, self.childBounds[bestFit].center)
|
||||
return self
|
||||
end
|
||||
|
||||
-- We have children. Use the appropriate child as the new root node
|
||||
return self.children[bestFit]
|
||||
end
|
||||
|
||||
--- Set values for this node.
|
||||
-- @param baseLength Length of this node, not taking looseness into account
|
||||
-- @param minSize Minimum size of nodes in this octree
|
||||
-- @param looseness Multiplier for baseLengthVal to get the actual size
|
||||
-- @param center Centre position of this node
|
||||
function OctreeNode:set_values(baseLength, minSize, looseness, center)
|
||||
-- Length of this node if it has a looseness of 1.0
|
||||
self.baseLength = baseLength
|
||||
|
||||
-- Minimum size for a node in this octree
|
||||
self.minSize = minSize
|
||||
|
||||
-- Looseness value for this node
|
||||
self.looseness = looseness
|
||||
|
||||
-- Centre of this node
|
||||
self.center = center
|
||||
|
||||
-- Actual length of sides, taking the looseness value into account
|
||||
self.adjLength = self.looseness * self.baseLength
|
||||
|
||||
-- Create the bounding box.
|
||||
self.size = vec3(self.adjLength, self.adjLength, self.adjLength)
|
||||
|
||||
-- Bounding box that represents this node
|
||||
self.bounds = new_bound(self.center, self.size)
|
||||
|
||||
self.quarter = self.baseLength / 4
|
||||
self.childActualLength = (self.baseLength / 2) * self.looseness
|
||||
self.childActualSize = vec3(self.childActualLength, self.childActualLength, self.childActualLength)
|
||||
|
||||
-- Bounds of potential children to this node. These are actual size (with looseness taken into account), not base size
|
||||
self.childBounds = {
|
||||
new_bound(self.center + vec3(-self.quarter, self.quarter, -self.quarter), self.childActualSize),
|
||||
new_bound(self.center + vec3( self.quarter, self.quarter, -self.quarter), self.childActualSize),
|
||||
new_bound(self.center + vec3(-self.quarter, self.quarter, self.quarter), self.childActualSize),
|
||||
new_bound(self.center + vec3( self.quarter, self.quarter, self.quarter), self.childActualSize),
|
||||
new_bound(self.center + vec3(-self.quarter, -self.quarter, -self.quarter), self.childActualSize),
|
||||
new_bound(self.center + vec3( self.quarter, -self.quarter, -self.quarter), self.childActualSize),
|
||||
new_bound(self.center + vec3(-self.quarter, -self.quarter, self.quarter), self.childActualSize),
|
||||
new_bound(self.center + vec3( self.quarter, -self.quarter, self.quarter), self.childActualSize)
|
||||
}
|
||||
end
|
||||
|
||||
--- Splits the octree into eight children.
|
||||
function OctreeNode:split()
|
||||
if #self.children > 0 then return end
|
||||
|
||||
local quarter = self.baseLength / 4
|
||||
local newLength = self.baseLength / 2
|
||||
|
||||
table.insert(self.children, Node(newLength, self.minSize, self.looseness, self.center + vec3(-quarter, quarter, -quarter)))
|
||||
table.insert(self.children, Node(newLength, self.minSize, self.looseness, self.center + vec3( quarter, quarter, -quarter)))
|
||||
table.insert(self.children, Node(newLength, self.minSize, self.looseness, self.center + vec3(-quarter, quarter, quarter)))
|
||||
table.insert(self.children, Node(newLength, self.minSize, self.looseness, self.center + vec3( quarter, quarter, quarter)))
|
||||
table.insert(self.children, Node(newLength, self.minSize, self.looseness, self.center + vec3(-quarter, -quarter, -quarter)))
|
||||
table.insert(self.children, Node(newLength, self.minSize, self.looseness, self.center + vec3( quarter, -quarter, -quarter)))
|
||||
table.insert(self.children, Node(newLength, self.minSize, self.looseness, self.center + vec3(-quarter, -quarter, quarter)))
|
||||
table.insert(self.children, Node(newLength, self.minSize, self.looseness, self.center + vec3( quarter, -quarter, quarter)))
|
||||
end
|
||||
|
||||
--- Merge all children into this node - the opposite of Split.
|
||||
--- Note: We only have to check one level down since a merge will never happen if the children already have children,
|
||||
--- since THAT won't happen unless there are already too many objects to merge.
|
||||
function OctreeNode:merge()
|
||||
for _, child in ipairs(self.children) do
|
||||
for _, object in ipairs(child.objects) do
|
||||
table.insert(self.objects, object)
|
||||
end
|
||||
end
|
||||
|
||||
-- Remove the child nodes (and the objects in them - they've been added elsewhere now)
|
||||
self.children = {}
|
||||
end
|
||||
|
||||
--- Find which child node this object would be most likely to fit in.
|
||||
-- @param objBounds The object's bounds
|
||||
-- @return number One of the eight child octants
|
||||
function OctreeNode:best_fit_child(objBounds)
|
||||
return (objBounds.center.x <= self.center.x and 0 or 1) + (objBounds.center.y >= self.center.y and 0 or 4) + (objBounds.center.z <= self.center.z and 0 or 2) + 1
|
||||
end
|
||||
|
||||
--- Checks if there are few enough objects in this node and its children that the children should all be merged into this.
|
||||
-- @return boolean True there are less or the same abount of objects in this and its children than numObjectsAllowed
|
||||
function OctreeNode:should_merge()
|
||||
local totalObjects = #self.objects
|
||||
|
||||
for _, child in ipairs(self.children) do
|
||||
if #child.children > 0 then
|
||||
-- If any of the *children* have children, there are definitely too many to merge,
|
||||
-- or the child would have been merged already
|
||||
return false
|
||||
end
|
||||
|
||||
totalObjects = totalObjects + #child.objects
|
||||
end
|
||||
|
||||
return totalObjects <= self.numObjectsAllowed
|
||||
end
|
||||
|
||||
--- Checks if this node or anything below it has something in it.
|
||||
-- @return boolean True if this node or any of its children, grandchildren etc have something in the
|
||||
function OctreeNode:has_any_objects()
|
||||
if #self.objects > 0 then return true end
|
||||
|
||||
for _, child in ipairs(self.children) do
|
||||
if child:has_any_objects() then return true end
|
||||
end
|
||||
|
||||
return false
|
||||
end
|
||||
|
||||
--- Draws node boundaries visually for debugging.
|
||||
-- @param cube Cube model to draw
|
||||
-- @param depth Used for recurcive calls to this method
|
||||
function OctreeNode:draw_bounds(cube, depth)
|
||||
depth = depth or 0
|
||||
local tint = depth / 7 -- Will eventually get values > 1. Color rounds to 1 automatically
|
||||
|
||||
love.graphics.setColor(tint * 255, 0, (1 - tint) * 255)
|
||||
local m = mat4()
|
||||
:translate(self.center)
|
||||
:scale(vec3(self.adjLength, self.adjLength, self.adjLength))
|
||||
|
||||
love.graphics.updateMatrix("transform", m)
|
||||
love.graphics.setWireframe(true)
|
||||
love.graphics.draw(cube)
|
||||
love.graphics.setWireframe(false)
|
||||
|
||||
for _, child in ipairs(self.children) do
|
||||
child:draw_bounds(cube, depth + 1)
|
||||
end
|
||||
|
||||
love.graphics.setColor(255, 255, 255)
|
||||
end
|
||||
|
||||
--- Draws the bounds of all objects in the tree visually for debugging.
|
||||
-- @param cube Cube model to draw
|
||||
-- @param filter a function returning true or false to determine visibility.
|
||||
function OctreeNode:draw_objects(cube, filter)
|
||||
local tint = self.baseLength / 20
|
||||
love.graphics.setColor(0, (1 - tint) * 255, tint * 255, 63)
|
||||
|
||||
for _, object in ipairs(self.objects) do
|
||||
if filter and filter(object.data) or not filter then
|
||||
local m = mat4()
|
||||
:translate(object.bounds.center)
|
||||
:scale(object.bounds.size)
|
||||
|
||||
love.graphics.updateMatrix("transform", m)
|
||||
love.graphics.draw(cube)
|
||||
end
|
||||
end
|
||||
|
||||
for _, child in ipairs(self.children) do
|
||||
child:draw_objects(cube, filter)
|
||||
end
|
||||
|
||||
love.graphics.setColor(255, 255, 255)
|
||||
end
|
||||
|
||||
Node = setmetatable({
|
||||
new = new_node
|
||||
}, {
|
||||
__call = function(_, ...) return new_node(...) end
|
||||
})
|
||||
|
||||
return setmetatable({
|
||||
new = new
|
||||
}, {
|
||||
__call = function(_, ...) return new(...) end
|
||||
})
|
498
libs/cpml/quat.lua
Normal file
498
libs/cpml/quat.lua
Normal file
@ -0,0 +1,498 @@
|
||||
--- A quaternion and associated utilities.
|
||||
-- @module quat
|
||||
|
||||
local modules = (...):gsub('%.[^%.]+$', '') .. "."
|
||||
local constants = require(modules .. "constants")
|
||||
local vec3 = require(modules .. "vec3")
|
||||
local precond = require(modules .. "_private_precond")
|
||||
local private = require(modules .. "_private_utils")
|
||||
local DOT_THRESHOLD = constants.DOT_THRESHOLD
|
||||
local DBL_EPSILON = constants.DBL_EPSILON
|
||||
local acos = math.acos
|
||||
local cos = math.cos
|
||||
local sin = math.sin
|
||||
local min = math.min
|
||||
local max = math.max
|
||||
local sqrt = math.sqrt
|
||||
local quat = {}
|
||||
local quat_mt = {}
|
||||
|
||||
-- Private constructor.
|
||||
local function new(x, y, z, w)
|
||||
return setmetatable({
|
||||
x = x or 0,
|
||||
y = y or 0,
|
||||
z = z or 0,
|
||||
w = w or 1
|
||||
}, quat_mt)
|
||||
end
|
||||
|
||||
-- Do the check to see if JIT is enabled. If so use the optimized FFI structs.
|
||||
local status, ffi
|
||||
if type(jit) == "table" and jit.status() then
|
||||
status, ffi = pcall(require, "ffi")
|
||||
if status then
|
||||
ffi.cdef "typedef struct { double x, y, z, w;} cpml_quat;"
|
||||
new = ffi.typeof("cpml_quat")
|
||||
end
|
||||
end
|
||||
|
||||
-- Statically allocate a temporary variable used in some of our functions.
|
||||
local tmp = new()
|
||||
local qv, uv, uuv = vec3(), vec3(), vec3()
|
||||
|
||||
--- Constants
|
||||
-- @table quat
|
||||
-- @field unit Unit quaternion
|
||||
-- @field zero Empty quaternion
|
||||
quat.unit = new(0, 0, 0, 1)
|
||||
quat.zero = new(0, 0, 0, 0)
|
||||
|
||||
--- The public constructor.
|
||||
-- @param x Can be of two types: </br>
|
||||
-- number x X component
|
||||
-- table {x, y, z, w} or {x=x, y=y, z=z, w=w}
|
||||
-- @tparam number y Y component
|
||||
-- @tparam number z Z component
|
||||
-- @tparam number w W component
|
||||
-- @treturn quat out
|
||||
function quat.new(x, y, z, w)
|
||||
-- number, number, number, number
|
||||
if x and y and z and w then
|
||||
precond.typeof(x, "number", "new: Wrong argument type for x")
|
||||
precond.typeof(y, "number", "new: Wrong argument type for y")
|
||||
precond.typeof(z, "number", "new: Wrong argument type for z")
|
||||
precond.typeof(w, "number", "new: Wrong argument type for w")
|
||||
|
||||
return new(x, y, z, w)
|
||||
|
||||
-- {x, y, z, w} or {x=x, y=y, z=z, w=w}
|
||||
elseif type(x) == "table" then
|
||||
local xx, yy, zz, ww = x.x or x[1], x.y or x[2], x.z or x[3], x.w or x[4]
|
||||
precond.typeof(xx, "number", "new: Wrong argument type for x")
|
||||
precond.typeof(yy, "number", "new: Wrong argument type for y")
|
||||
precond.typeof(zz, "number", "new: Wrong argument type for z")
|
||||
precond.typeof(ww, "number", "new: Wrong argument type for w")
|
||||
|
||||
return new(xx, yy, zz, ww)
|
||||
end
|
||||
|
||||
return new(0, 0, 0, 1)
|
||||
end
|
||||
|
||||
--- Create a quaternion from an angle/axis pair.
|
||||
-- @tparam number angle Angle (in radians)
|
||||
-- @param axis/x -- Can be of two types, a vec3 axis, or the x component of that axis
|
||||
-- @param y axis -- y component of axis (optional, only if x component param used)
|
||||
-- @param z axis -- z component of axis (optional, only if x component param used)
|
||||
-- @treturn quat out
|
||||
function quat.from_angle_axis(angle, axis, a3, a4)
|
||||
if axis and a3 and a4 then
|
||||
local x, y, z = axis, a3, a4
|
||||
local s = sin(angle * 0.5)
|
||||
local c = cos(angle * 0.5)
|
||||
return new(x * s, y * s, z * s, c)
|
||||
else
|
||||
return quat.from_angle_axis(angle, axis.x, axis.y, axis.z)
|
||||
end
|
||||
end
|
||||
|
||||
--- Create a quaternion from a normal/up vector pair.
|
||||
-- @tparam vec3 normal
|
||||
-- @tparam vec3 up (optional)
|
||||
-- @treturn quat out
|
||||
function quat.from_direction(normal, up)
|
||||
local u = up or vec3.unit_z
|
||||
local n = normal:normalize()
|
||||
local a = u:cross(n)
|
||||
local d = u:dot(n)
|
||||
return new(a.x, a.y, a.z, d + 1)
|
||||
end
|
||||
|
||||
--- Clone a quaternion.
|
||||
-- @tparam quat a Quaternion to clone
|
||||
-- @treturn quat out
|
||||
function quat.clone(a)
|
||||
return new(a.x, a.y, a.z, a.w)
|
||||
end
|
||||
|
||||
--- Add two quaternions.
|
||||
-- @tparam quat a Left hand operand
|
||||
-- @tparam quat b Right hand operand
|
||||
-- @treturn quat out
|
||||
function quat.add(a, b)
|
||||
return new(
|
||||
a.x + b.x,
|
||||
a.y + b.y,
|
||||
a.z + b.z,
|
||||
a.w + b.w
|
||||
)
|
||||
end
|
||||
|
||||
--- Subtract a quaternion from another.
|
||||
-- @tparam quat a Left hand operand
|
||||
-- @tparam quat b Right hand operand
|
||||
-- @treturn quat out
|
||||
function quat.sub(a, b)
|
||||
return new(
|
||||
a.x - b.x,
|
||||
a.y - b.y,
|
||||
a.z - b.z,
|
||||
a.w - b.w
|
||||
)
|
||||
end
|
||||
|
||||
--- Multiply two quaternions.
|
||||
-- @tparam quat a Left hand operand
|
||||
-- @tparam quat b Right hand operand
|
||||
-- @treturn quat quaternion equivalent to "apply b, then a"
|
||||
function quat.mul(a, b)
|
||||
return new(
|
||||
a.x * b.w + a.w * b.x + a.y * b.z - a.z * b.y,
|
||||
a.y * b.w + a.w * b.y + a.z * b.x - a.x * b.z,
|
||||
a.z * b.w + a.w * b.z + a.x * b.y - a.y * b.x,
|
||||
a.w * b.w - a.x * b.x - a.y * b.y - a.z * b.z
|
||||
)
|
||||
end
|
||||
|
||||
--- Multiply a quaternion and a vec3.
|
||||
-- @tparam quat a Left hand operand
|
||||
-- @tparam vec3 b Right hand operand
|
||||
-- @treturn vec3 out
|
||||
function quat.mul_vec3(a, b)
|
||||
qv.x = a.x
|
||||
qv.y = a.y
|
||||
qv.z = a.z
|
||||
uv = qv:cross(b)
|
||||
uuv = qv:cross(uv)
|
||||
return b + ((uv * a.w) + uuv) * 2
|
||||
end
|
||||
|
||||
--- Raise a normalized quaternion to a scalar power.
|
||||
-- @tparam quat a Left hand operand (should be a unit quaternion)
|
||||
-- @tparam number s Right hand operand
|
||||
-- @treturn quat out
|
||||
function quat.pow(a, s)
|
||||
-- Do it as a slerp between identity and a (code borrowed from slerp)
|
||||
if a.w < 0 then
|
||||
a = -a
|
||||
end
|
||||
local dot = a.w
|
||||
|
||||
dot = min(max(dot, -1), 1)
|
||||
|
||||
local theta = acos(dot) * s
|
||||
local c = new(a.x, a.y, a.z, 0):normalize() * sin(theta)
|
||||
c.w = cos(theta)
|
||||
return c
|
||||
end
|
||||
|
||||
--- Normalize a quaternion.
|
||||
-- @tparam quat a Quaternion to normalize
|
||||
-- @treturn quat out
|
||||
function quat.normalize(a)
|
||||
if a:is_zero() then
|
||||
return new(0, 0, 0, 0)
|
||||
end
|
||||
return a:scale(1 / a:len())
|
||||
end
|
||||
|
||||
--- Get the dot product of two quaternions.
|
||||
-- @tparam quat a Left hand operand
|
||||
-- @tparam quat b Right hand operand
|
||||
-- @treturn number dot
|
||||
function quat.dot(a, b)
|
||||
return a.x * b.x + a.y * b.y + a.z * b.z + a.w * b.w
|
||||
end
|
||||
|
||||
--- Return the length of a quaternion.
|
||||
-- @tparam quat a Quaternion to get length of
|
||||
-- @treturn number len
|
||||
function quat.len(a)
|
||||
return sqrt(a.x * a.x + a.y * a.y + a.z * a.z + a.w * a.w)
|
||||
end
|
||||
|
||||
--- Return the squared length of a quaternion.
|
||||
-- @tparam quat a Quaternion to get length of
|
||||
-- @treturn number len
|
||||
function quat.len2(a)
|
||||
return a.x * a.x + a.y * a.y + a.z * a.z + a.w * a.w
|
||||
end
|
||||
|
||||
--- Multiply a quaternion by a scalar.
|
||||
-- @tparam quat a Left hand operand
|
||||
-- @tparam number s Right hand operand
|
||||
-- @treturn quat out
|
||||
function quat.scale(a, s)
|
||||
return new(
|
||||
a.x * s,
|
||||
a.y * s,
|
||||
a.z * s,
|
||||
a.w * s
|
||||
)
|
||||
end
|
||||
|
||||
--- Alias of from_angle_axis.
|
||||
-- @tparam number angle Angle (in radians)
|
||||
-- @param axis/x -- Can be of two types, a vec3 axis, or the x component of that axis
|
||||
-- @param y axis -- y component of axis (optional, only if x component param used)
|
||||
-- @param z axis -- z component of axis (optional, only if x component param used)
|
||||
-- @treturn quat out
|
||||
function quat.rotate(angle, axis, a3, a4)
|
||||
return quat.from_angle_axis(angle, axis, a3, a4)
|
||||
end
|
||||
|
||||
--- Return the conjugate of a quaternion.
|
||||
-- @tparam quat a Quaternion to conjugate
|
||||
-- @treturn quat out
|
||||
function quat.conjugate(a)
|
||||
return new(-a.x, -a.y, -a.z, a.w)
|
||||
end
|
||||
|
||||
--- Return the inverse of a quaternion.
|
||||
-- @tparam quat a Quaternion to invert
|
||||
-- @treturn quat out
|
||||
function quat.inverse(a)
|
||||
tmp.x = -a.x
|
||||
tmp.y = -a.y
|
||||
tmp.z = -a.z
|
||||
tmp.w = a.w
|
||||
return tmp:normalize()
|
||||
end
|
||||
|
||||
--- Return the reciprocal of a quaternion.
|
||||
-- @tparam quat a Quaternion to reciprocate
|
||||
-- @treturn quat out
|
||||
function quat.reciprocal(a)
|
||||
if a:is_zero() then
|
||||
error("Cannot reciprocate a zero quaternion")
|
||||
return false
|
||||
end
|
||||
|
||||
tmp.x = -a.x
|
||||
tmp.y = -a.y
|
||||
tmp.z = -a.z
|
||||
tmp.w = a.w
|
||||
|
||||
return tmp:scale(1 / a:len2())
|
||||
end
|
||||
|
||||
--- Lerp between two quaternions.
|
||||
-- @tparam quat a Left hand operand
|
||||
-- @tparam quat b Right hand operand
|
||||
-- @tparam number s Step value
|
||||
-- @treturn quat out
|
||||
function quat.lerp(a, b, s)
|
||||
return (a + (b - a) * s):normalize()
|
||||
end
|
||||
|
||||
--- Slerp between two quaternions.
|
||||
-- @tparam quat a Left hand operand
|
||||
-- @tparam quat b Right hand operand
|
||||
-- @tparam number s Step value
|
||||
-- @treturn quat out
|
||||
function quat.slerp(a, b, s)
|
||||
local dot = a:dot(b)
|
||||
|
||||
if dot < 0 then
|
||||
a = -a
|
||||
dot = -dot
|
||||
end
|
||||
|
||||
if dot > DOT_THRESHOLD then
|
||||
return a:lerp(b, s)
|
||||
end
|
||||
|
||||
dot = min(max(dot, -1), 1)
|
||||
|
||||
local theta = acos(dot) * s
|
||||
local c = (b - a * dot):normalize()
|
||||
return a * cos(theta) + c * sin(theta)
|
||||
end
|
||||
|
||||
--- Unpack a quaternion into individual components.
|
||||
-- @tparam quat a Quaternion to unpack
|
||||
-- @treturn number x
|
||||
-- @treturn number y
|
||||
-- @treturn number z
|
||||
-- @treturn number w
|
||||
function quat.unpack(a)
|
||||
return a.x, a.y, a.z, a.w
|
||||
end
|
||||
|
||||
--- Return a boolean showing if a table is or is not a quat.
|
||||
-- @tparam quat a Quaternion to be tested
|
||||
-- @treturn boolean is_quat
|
||||
function quat.is_quat(a)
|
||||
if type(a) == "cdata" then
|
||||
return ffi.istype("cpml_quat", a)
|
||||
end
|
||||
|
||||
return
|
||||
type(a) == "table" and
|
||||
type(a.x) == "number" and
|
||||
type(a.y) == "number" and
|
||||
type(a.z) == "number" and
|
||||
type(a.w) == "number"
|
||||
end
|
||||
|
||||
--- Return a boolean showing if a table is or is not a zero quat.
|
||||
-- @tparam quat a Quaternion to be tested
|
||||
-- @treturn boolean is_zero
|
||||
function quat.is_zero(a)
|
||||
return
|
||||
a.x == 0 and
|
||||
a.y == 0 and
|
||||
a.z == 0 and
|
||||
a.w == 0
|
||||
end
|
||||
|
||||
--- Return a boolean showing if a table is or is not a real quat.
|
||||
-- @tparam quat a Quaternion to be tested
|
||||
-- @treturn boolean is_real
|
||||
function quat.is_real(a)
|
||||
return
|
||||
a.x == 0 and
|
||||
a.y == 0 and
|
||||
a.z == 0
|
||||
end
|
||||
|
||||
--- Return a boolean showing if a table is or is not an imaginary quat.
|
||||
-- @tparam quat a Quaternion to be tested
|
||||
-- @treturn boolean is_imaginary
|
||||
function quat.is_imaginary(a)
|
||||
return a.w == 0
|
||||
end
|
||||
|
||||
--- Return whether any component is NaN
|
||||
-- @tparam quat a Quaternion to be tested
|
||||
-- @treturn boolean if x,y,z, or w is NaN
|
||||
function quat.has_nan(a)
|
||||
return private.is_nan(a.x) or
|
||||
private.is_nan(a.y) or
|
||||
private.is_nan(a.z) or
|
||||
private.is_nan(a.w)
|
||||
end
|
||||
|
||||
--- Convert a quaternion into an angle plus axis components.
|
||||
-- @tparam quat a Quaternion to convert
|
||||
-- @tparam identityAxis vec3 of axis to use on identity/degenerate quaternions (optional, default returns 0,0,0,1)
|
||||
-- @treturn number angle
|
||||
-- @treturn x axis-x
|
||||
-- @treturn y axis-y
|
||||
-- @treturn z axis-z
|
||||
function quat.to_angle_axis_unpack(a, identityAxis)
|
||||
if a.w > 1 or a.w < -1 then
|
||||
a = a:normalize()
|
||||
end
|
||||
|
||||
-- If length of xyz components is less than DBL_EPSILON, this is zero or close enough (an identity quaternion)
|
||||
-- Normally an identity quat would return a nonsense answer, so we return an arbitrary zero rotation early.
|
||||
-- FIXME: Is it safe to assume there are *no* valid quaternions with nonzero degenerate lengths?
|
||||
if a.x*a.x + a.y*a.y + a.z*a.z < constants.DBL_EPSILON*constants.DBL_EPSILON then
|
||||
if identityAxis then
|
||||
return 0,identityAxis:unpack()
|
||||
else
|
||||
return 0,0,0,1
|
||||
end
|
||||
end
|
||||
|
||||
local x, y, z
|
||||
local angle = 2 * acos(a.w)
|
||||
local s = sqrt(1 - a.w * a.w)
|
||||
|
||||
if s < DBL_EPSILON then
|
||||
x = a.x
|
||||
y = a.y
|
||||
z = a.z
|
||||
else
|
||||
x = a.x / s
|
||||
y = a.y / s
|
||||
z = a.z / s
|
||||
end
|
||||
|
||||
return angle, x, y, z
|
||||
end
|
||||
|
||||
--- Convert a quaternion into an angle/axis pair.
|
||||
-- @tparam quat a Quaternion to convert
|
||||
-- @tparam identityAxis vec3 of axis to use on identity/degenerate quaternions (optional, default returns 0,vec3(0,0,1))
|
||||
-- @treturn number angle
|
||||
-- @treturn vec3 axis
|
||||
function quat.to_angle_axis(a, identityAxis)
|
||||
local angle, x, y, z = a:to_angle_axis_unpack(identityAxis)
|
||||
return angle, vec3(x, y, z)
|
||||
end
|
||||
|
||||
--- Convert a quaternion into a vec3.
|
||||
-- @tparam quat a Quaternion to convert
|
||||
-- @treturn vec3 out
|
||||
function quat.to_vec3(a)
|
||||
return vec3(a.x, a.y, a.z)
|
||||
end
|
||||
|
||||
--- Return a formatted string.
|
||||
-- @tparam quat a Quaternion to be turned into a string
|
||||
-- @treturn string formatted
|
||||
function quat.to_string(a)
|
||||
return string.format("(%+0.3f,%+0.3f,%+0.3f,%+0.3f)", a.x, a.y, a.z, a.w)
|
||||
end
|
||||
|
||||
quat_mt.__index = quat
|
||||
quat_mt.__tostring = quat.to_string
|
||||
|
||||
function quat_mt.__call(_, x, y, z, w)
|
||||
return quat.new(x, y, z, w)
|
||||
end
|
||||
|
||||
function quat_mt.__unm(a)
|
||||
return a:scale(-1)
|
||||
end
|
||||
|
||||
function quat_mt.__eq(a,b)
|
||||
if not quat.is_quat(a) or not quat.is_quat(b) then
|
||||
return false
|
||||
end
|
||||
return a.x == b.x and a.y == b.y and a.z == b.z and a.w == b.w
|
||||
end
|
||||
|
||||
function quat_mt.__add(a, b)
|
||||
precond.assert(quat.is_quat(a), "__add: Wrong argument type '%s' for left hand operand. (<cpml.quat> expected)", type(a))
|
||||
precond.assert(quat.is_quat(b), "__add: Wrong argument type '%s' for right hand operand. (<cpml.quat> expected)", type(b))
|
||||
return a:add(b)
|
||||
end
|
||||
|
||||
function quat_mt.__sub(a, b)
|
||||
precond.assert(quat.is_quat(a), "__sub: Wrong argument type '%s' for left hand operand. (<cpml.quat> expected)", type(a))
|
||||
precond.assert(quat.is_quat(b), "__sub: Wrong argument type '%s' for right hand operand. (<cpml.quat> expected)", type(b))
|
||||
return a:sub(b)
|
||||
end
|
||||
|
||||
function quat_mt.__mul(a, b)
|
||||
precond.assert(quat.is_quat(a), "__mul: Wrong argument type '%s' for left hand operand. (<cpml.quat> expected)", type(a))
|
||||
assert(quat.is_quat(b) or vec3.is_vec3(b) or type(b) == "number", "__mul: Wrong argument type for right hand operand. (<cpml.quat> or <cpml.vec3> or <number> expected)")
|
||||
|
||||
if quat.is_quat(b) then
|
||||
return a:mul(b)
|
||||
end
|
||||
|
||||
if type(b) == "number" then
|
||||
return a:scale(b)
|
||||
end
|
||||
|
||||
return a:mul_vec3(b)
|
||||
end
|
||||
|
||||
function quat_mt.__pow(a, n)
|
||||
precond.assert(quat.is_quat(a), "__pow: Wrong argument type '%s' for left hand operand. (<cpml.quat> expected)", type(a))
|
||||
precond.typeof(n, "number", "__pow: Wrong argument type for right hand operand.")
|
||||
return a:pow(n)
|
||||
end
|
||||
|
||||
if status then
|
||||
xpcall(function() -- Allow this to silently fail; assume failure means someone messed with package.loaded
|
||||
ffi.metatype(new, quat_mt)
|
||||
end, function() end)
|
||||
end
|
||||
|
||||
return setmetatable({}, quat_mt)
|
349
libs/cpml/simplex.lua
Normal file
349
libs/cpml/simplex.lua
Normal file
@ -0,0 +1,349 @@
|
||||
--- Simplex Noise
|
||||
-- @module simplex
|
||||
|
||||
--
|
||||
-- Based on code in "Simplex noise demystified", by Stefan Gustavson
|
||||
-- www.itn.liu.se/~stegu/simplexnoise/simplexnoise.pdf
|
||||
--
|
||||
-- Thanks to Mike Pall for some cleanup and improvements (and for LuaJIT!)
|
||||
--
|
||||
-- Permission is hereby granted, free of charge, to any person obtaining
|
||||
-- a copy of this software and associated documentation files (the
|
||||
-- "Software"), to deal in the Software without restriction, including
|
||||
-- without limitation the rights to use, copy, modify, merge, publish,
|
||||
-- distribute, sublicense, and/or sell copies of the Software, and to
|
||||
-- permit persons to whom the Software is furnished to do so, subject to
|
||||
-- the following conditions:
|
||||
--
|
||||
-- The above copyright notice and this permission notice shall be
|
||||
-- included in all copies or substantial portions of the Software.
|
||||
--
|
||||
-- THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
|
||||
-- EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
|
||||
-- MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
|
||||
-- IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
|
||||
-- CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
|
||||
-- TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
|
||||
-- SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
|
||||
--
|
||||
-- [ MIT license: http://www.opensource.org/licenses/mit-license.php ]
|
||||
--
|
||||
|
||||
if _G.love and _G.love.math then
|
||||
return love.math.noise
|
||||
end
|
||||
|
||||
-- Bail out with dummy module if FFI is missing.
|
||||
local has_ffi, ffi = pcall(require, "ffi")
|
||||
if not has_ffi then
|
||||
return function()
|
||||
return 0
|
||||
end
|
||||
end
|
||||
|
||||
-- Modules --
|
||||
local bit = require("bit")
|
||||
|
||||
-- Imports --
|
||||
local band = bit.band
|
||||
local bor = bit.bor
|
||||
local floor = math.floor
|
||||
local lshift = bit.lshift
|
||||
local max = math.max
|
||||
local rshift = bit.rshift
|
||||
|
||||
-- Permutation of 0-255, replicated to allow easy indexing with sums of two bytes --
|
||||
local Perms = ffi.new("uint8_t[512]", {
|
||||
151, 160, 137, 91, 90, 15, 131, 13, 201, 95, 96, 53, 194, 233, 7, 225,
|
||||
140, 36, 103, 30, 69, 142, 8, 99, 37, 240, 21, 10, 23, 190, 6, 148,
|
||||
247, 120, 234, 75, 0, 26, 197, 62, 94, 252, 219, 203, 117, 35, 11, 32,
|
||||
57, 177, 33, 88, 237, 149, 56, 87, 174, 20, 125, 136, 171, 168, 68, 175,
|
||||
74, 165, 71, 134, 139, 48, 27, 166, 77, 146, 158, 231, 83, 111, 229, 122,
|
||||
60, 211, 133, 230, 220, 105, 92, 41, 55, 46, 245, 40, 244, 102, 143, 54,
|
||||
65, 25, 63, 161, 1, 216, 80, 73, 209, 76, 132, 187, 208, 89, 18, 169,
|
||||
200, 196, 135, 130, 116, 188, 159, 86, 164, 100, 109, 198, 173, 186, 3, 64,
|
||||
52, 217, 226, 250, 124, 123, 5, 202, 38, 147, 118, 126, 255, 82, 85, 212,
|
||||
207, 206, 59, 227, 47, 16, 58, 17, 182, 189, 28, 42, 223, 183, 170, 213,
|
||||
119, 248, 152, 2, 44, 154, 163, 70, 221, 153, 101, 155, 167, 43, 172, 9,
|
||||
129, 22, 39, 253, 19, 98, 108, 110, 79, 113, 224, 232, 178, 185, 112, 104,
|
||||
218, 246, 97, 228, 251, 34, 242, 193, 238, 210, 144, 12, 191, 179, 162, 241,
|
||||
81, 51, 145, 235, 249, 14, 239, 107, 49, 192, 214, 31, 181, 199, 106, 157,
|
||||
184, 84, 204, 176, 115, 121, 50, 45, 127, 4, 150, 254, 138, 236, 205, 93,
|
||||
222, 114, 67, 29, 24, 72, 243, 141, 128, 195, 78, 66, 215, 61, 156, 180
|
||||
})
|
||||
|
||||
-- The above, mod 12 for each element --
|
||||
local Perms12 = ffi.new("uint8_t[512]")
|
||||
|
||||
for i = 0, 255 do
|
||||
local x = Perms[i] % 12
|
||||
|
||||
Perms[i + 256], Perms12[i], Perms12[i + 256] = Perms[i], x, x
|
||||
end
|
||||
|
||||
-- Gradients for 2D, 3D case --
|
||||
local Grads3 = ffi.new("const double[12][3]",
|
||||
{ 1, 1, 0 }, { -1, 1, 0 }, { 1, -1, 0 }, { -1, -1, 0 },
|
||||
{ 1, 0, 1 }, { -1, 0, 1 }, { 1, 0, -1 }, { -1, 0, -1 },
|
||||
{ 0, 1, 1 }, { 0, -1, 1 }, { 0, 1, -1 }, { 0, -1, -1 }
|
||||
)
|
||||
|
||||
-- 2D weight contribution
|
||||
local function GetN2(bx, by, x, y)
|
||||
local t = .5 - x * x - y * y
|
||||
local index = Perms12[bx + Perms[by]]
|
||||
|
||||
return max(0, (t * t) * (t * t)) * (Grads3[index][0] * x + Grads3[index][1] * y)
|
||||
end
|
||||
|
||||
local function simplex_2d(x, y)
|
||||
--[[
|
||||
2D skew factors:
|
||||
F = (math.sqrt(3) - 1) / 2
|
||||
G = (3 - math.sqrt(3)) / 6
|
||||
G2 = 2 * G - 1
|
||||
]]
|
||||
|
||||
-- Skew the input space to determine which simplex cell we are in.
|
||||
local s = (x + y) * 0.366025403 -- F
|
||||
local ix, iy = floor(x + s), floor(y + s)
|
||||
|
||||
-- Unskew the cell origin back to (x, y) space.
|
||||
local t = (ix + iy) * 0.211324865 -- G
|
||||
local x0 = x + t - ix
|
||||
local y0 = y + t - iy
|
||||
|
||||
-- Calculate the contribution from the two fixed corners.
|
||||
-- A step of (1,0) in (i,j) means a step of (1-G,-G) in (x,y), and
|
||||
-- A step of (0,1) in (i,j) means a step of (-G,1-G) in (x,y).
|
||||
ix, iy = band(ix, 255), band(iy, 255)
|
||||
|
||||
local n0 = GetN2(ix, iy, x0, y0)
|
||||
local n2 = GetN2(ix + 1, iy + 1, x0 - 0.577350270, y0 - 0.577350270) -- G2
|
||||
|
||||
--[[
|
||||
Determine other corner based on simplex (equilateral triangle) we are in:
|
||||
if x0 > y0 then
|
||||
ix, x1 = ix + 1, x1 - 1
|
||||
else
|
||||
iy, y1 = iy + 1, y1 - 1
|
||||
end
|
||||
]]
|
||||
local xi = rshift(floor(y0 - x0), 31) -- y0 < x0
|
||||
local n1 = GetN2(ix + xi, iy + (1 - xi), x0 + 0.211324865 - xi, y0 - 0.788675135 + xi) -- x0 + G - xi, y0 + G - (1 - xi)
|
||||
|
||||
-- Add contributions from each corner to get the final noise value.
|
||||
-- The result is scaled to return values in the interval [-1,1].
|
||||
return 70.1480580019 * (n0 + n1 + n2)
|
||||
end
|
||||
|
||||
-- 3D weight contribution
|
||||
local function GetN3(ix, iy, iz, x, y, z)
|
||||
local t = .6 - x * x - y * y - z * z
|
||||
local index = Perms12[ix + Perms[iy + Perms[iz]]]
|
||||
|
||||
return max(0, (t * t) * (t * t)) * (Grads3[index][0] * x + Grads3[index][1] * y + Grads3[index][2] * z)
|
||||
end
|
||||
|
||||
local function simplex_3d(x, y, z)
|
||||
--[[
|
||||
3D skew factors:
|
||||
F = 1 / 3
|
||||
G = 1 / 6
|
||||
G2 = 2 * G
|
||||
G3 = 3 * G - 1
|
||||
]]
|
||||
|
||||
-- Skew the input space to determine which simplex cell we are in.
|
||||
local s = (x + y + z) * 0.333333333 -- F
|
||||
local ix, iy, iz = floor(x + s), floor(y + s), floor(z + s)
|
||||
|
||||
-- Unskew the cell origin back to (x, y, z) space.
|
||||
local t = (ix + iy + iz) * 0.166666667 -- G
|
||||
local x0 = x + t - ix
|
||||
local y0 = y + t - iy
|
||||
local z0 = z + t - iz
|
||||
|
||||
-- Calculate the contribution from the two fixed corners.
|
||||
-- A step of (1,0,0) in (i,j,k) means a step of (1-G,-G,-G) in (x,y,z);
|
||||
-- a step of (0,1,0) in (i,j,k) means a step of (-G,1-G,-G) in (x,y,z);
|
||||
-- a step of (0,0,1) in (i,j,k) means a step of (-G,-G,1-G) in (x,y,z).
|
||||
ix, iy, iz = band(ix, 255), band(iy, 255), band(iz, 255)
|
||||
|
||||
local n0 = GetN3(ix, iy, iz, x0, y0, z0)
|
||||
local n3 = GetN3(ix + 1, iy + 1, iz + 1, x0 - 0.5, y0 - 0.5, z0 - 0.5) -- G3
|
||||
|
||||
--[[
|
||||
Determine other corners based on simplex (skewed tetrahedron) we are in:
|
||||
|
||||
if x0 >= y0 then -- ~A
|
||||
if y0 >= z0 then -- ~A and ~B
|
||||
i1, j1, k1, i2, j2, k2 = 1, 0, 0, 1, 1, 0
|
||||
elseif x0 >= z0 then -- ~A and B and ~C
|
||||
i1, j1, k1, i2, j2, k2 = 1, 0, 0, 1, 0, 1
|
||||
else -- ~A and B and C
|
||||
i1, j1, k1, i2, j2, k2 = 0, 0, 1, 1, 0, 1
|
||||
end
|
||||
else -- A
|
||||
if y0 < z0 then -- A and B
|
||||
i1, j1, k1, i2, j2, k2 = 0, 0, 1, 0, 1, 1
|
||||
elseif x0 < z0 then -- A and ~B and C
|
||||
i1, j1, k1, i2, j2, k2 = 0, 1, 0, 0, 1, 1
|
||||
else -- A and ~B and ~C
|
||||
i1, j1, k1, i2, j2, k2 = 0, 1, 0, 1, 1, 0
|
||||
end
|
||||
end
|
||||
]]
|
||||
|
||||
local xLy = rshift(floor(x0 - y0), 31) -- x0 < y0
|
||||
local yLz = rshift(floor(y0 - z0), 31) -- y0 < z0
|
||||
local xLz = rshift(floor(x0 - z0), 31) -- x0 < z0
|
||||
|
||||
local i1 = band(1 - xLy, bor(1 - yLz, 1 - xLz)) -- x0 >= y0 and (y0 >= z0 or x0 >= z0)
|
||||
local j1 = band(xLy, 1 - yLz) -- x0 < y0 and y0 >= z0
|
||||
local k1 = band(yLz, bor(xLy, xLz)) -- y0 < z0 and (x0 < y0 or x0 < z0)
|
||||
|
||||
local i2 = bor(1 - xLy, band(1 - yLz, 1 - xLz)) -- x0 >= y0 or (y0 >= z0 and x0 >= z0)
|
||||
local j2 = bor(xLy, 1 - yLz) -- x0 < y0 or y0 >= z0
|
||||
local k2 = bor(band(1 - xLy, yLz), band(xLy, bor(yLz, xLz))) -- (x0 >= y0 and y0 < z0) or (x0 < y0 and (y0 < z0 or x0 < z0))
|
||||
|
||||
local n1 = GetN3(ix + i1, iy + j1, iz + k1, x0 + 0.166666667 - i1, y0 + 0.166666667 - j1, z0 + 0.166666667 - k1) -- G
|
||||
local n2 = GetN3(ix + i2, iy + j2, iz + k2, x0 + 0.333333333 - i2, y0 + 0.333333333 - j2, z0 + 0.333333333 - k2) -- G2
|
||||
|
||||
-- Add contributions from each corner to get the final noise value.
|
||||
-- The result is scaled to stay just inside [-1,1]
|
||||
return 28.452842 * (n0 + n1 + n2 + n3)
|
||||
end
|
||||
|
||||
-- Gradients for 4D case --
|
||||
local Grads4 = ffi.new("const double[32][4]",
|
||||
{ 0, 1, 1, 1 }, { 0, 1, 1, -1 }, { 0, 1, -1, 1 }, { 0, 1, -1, -1 },
|
||||
{ 0, -1, 1, 1 }, { 0, -1, 1, -1 }, { 0, -1, -1, 1 }, { 0, -1, -1, -1 },
|
||||
{ 1, 0, 1, 1 }, { 1, 0, 1, -1 }, { 1, 0, -1, 1 }, { 1, 0, -1, -1 },
|
||||
{ -1, 0, 1, 1 }, { -1, 0, 1, -1 }, { -1, 0, -1, 1 }, { -1, 0, -1, -1 },
|
||||
{ 1, 1, 0, 1 }, { 1, 1, 0, -1 }, { 1, -1, 0, 1 }, { 1, -1, 0, -1 },
|
||||
{ -1, 1, 0, 1 }, { -1, 1, 0, -1 }, { -1, -1, 0, 1 }, { -1, -1, 0, -1 },
|
||||
{ 1, 1, 1, 0 }, { 1, 1, -1, 0 }, { 1, -1, 1, 0 }, { 1, -1, -1, 0 },
|
||||
{ -1, 1, 1, 0 }, { -1, 1, -1, 0 }, { -1, -1, 1, 0 }, { -1, -1, -1, 0 }
|
||||
)
|
||||
|
||||
-- 4D weight contribution
|
||||
local function GetN4(ix, iy, iz, iw, x, y, z, w)
|
||||
local t = .6 - x * x - y * y - z * z - w * w
|
||||
local index = band(Perms[ix + Perms[iy + Perms[iz + Perms[iw]]]], 0x1F)
|
||||
|
||||
return max(0, (t * t) * (t * t)) * (Grads4[index][0] * x + Grads4[index][1] * y + Grads4[index][2] * z + Grads4[index][3] * w)
|
||||
end
|
||||
|
||||
-- A lookup table to traverse the simplex around a given point in 4D.
|
||||
-- Details can be found where this table is used, in the 4D noise method.
|
||||
local Simplex = ffi.new("uint8_t[64][4]",
|
||||
{ 0, 1, 2, 3 }, { 0, 1, 3, 2 }, {}, { 0, 2, 3, 1 }, {}, {}, {}, { 1, 2, 3 },
|
||||
{ 0, 2, 1, 3 }, {}, { 0, 3, 1, 2 }, { 0, 3, 2, 1 }, {}, {}, {}, { 1, 3, 2 },
|
||||
{}, {}, {}, {}, {}, {}, {}, {},
|
||||
{ 1, 2, 0, 3 }, {}, { 1, 3, 0, 2 }, {}, {}, {}, { 2, 3, 0, 1 }, { 2, 3, 1 },
|
||||
{ 1, 0, 2, 3 }, { 1, 0, 3, 2 }, {}, {}, {}, { 2, 0, 3, 1 }, {}, { 2, 1, 3 },
|
||||
{}, {}, {}, {}, {}, {}, {}, {},
|
||||
{ 2, 0, 1, 3 }, {}, {}, {}, { 3, 0, 1, 2 }, { 3, 0, 2, 1 }, {}, { 3, 1, 2 },
|
||||
{ 2, 1, 0, 3 }, {}, {}, {}, { 3, 1, 0, 2 }, {}, { 3, 2, 0, 1 }, { 3, 2, 1 }
|
||||
)
|
||||
|
||||
-- Convert the above indices to masks that can be shifted / anded into offsets --
|
||||
for i = 0, 63 do
|
||||
Simplex[i][0] = lshift(1, Simplex[i][0]) - 1
|
||||
Simplex[i][1] = lshift(1, Simplex[i][1]) - 1
|
||||
Simplex[i][2] = lshift(1, Simplex[i][2]) - 1
|
||||
Simplex[i][3] = lshift(1, Simplex[i][3]) - 1
|
||||
end
|
||||
|
||||
local function simplex_4d(x, y, z, w)
|
||||
--[[
|
||||
4D skew factors:
|
||||
F = (math.sqrt(5) - 1) / 4
|
||||
G = (5 - math.sqrt(5)) / 20
|
||||
G2 = 2 * G
|
||||
G3 = 3 * G
|
||||
G4 = 4 * G - 1
|
||||
]]
|
||||
|
||||
-- Skew the input space to determine which simplex cell we are in.
|
||||
local s = (x + y + z + w) * 0.309016994 -- F
|
||||
local ix, iy, iz, iw = floor(x + s), floor(y + s), floor(z + s), floor(w + s)
|
||||
|
||||
-- Unskew the cell origin back to (x, y, z) space.
|
||||
local t = (ix + iy + iz + iw) * 0.138196601 -- G
|
||||
local x0 = x + t - ix
|
||||
local y0 = y + t - iy
|
||||
local z0 = z + t - iz
|
||||
local w0 = w + t - iw
|
||||
|
||||
-- For the 4D case, the simplex is a 4D shape I won't even try to describe.
|
||||
-- To find out which of the 24 possible simplices we're in, we need to
|
||||
-- determine the magnitude ordering of x0, y0, z0 and w0.
|
||||
-- The method below is a good way of finding the ordering of x,y,z,w and
|
||||
-- then find the correct traversal order for the simplex we<77>re in.
|
||||
-- First, six pair-wise comparisons are performed between each possible pair
|
||||
-- of the four coordinates, and the results are used to add up binary bits
|
||||
-- for an integer index.
|
||||
local c1 = band(rshift(floor(y0 - x0), 26), 32)
|
||||
local c2 = band(rshift(floor(z0 - x0), 27), 16)
|
||||
local c3 = band(rshift(floor(z0 - y0), 28), 8)
|
||||
local c4 = band(rshift(floor(w0 - x0), 29), 4)
|
||||
local c5 = band(rshift(floor(w0 - y0), 30), 2)
|
||||
local c6 = rshift(floor(w0 - z0), 31)
|
||||
|
||||
-- Simplex[c] is a 4-vector with the numbers 0, 1, 2 and 3 in some order.
|
||||
-- Many values of c will never occur, since e.g. x>y>z>w makes x<z, y<w and x<w
|
||||
-- impossible. Only the 24 indices which have non-zero entries make any sense.
|
||||
-- We use a thresholding to set the coordinates in turn from the largest magnitude.
|
||||
local c = c1 + c2 + c3 + c4 + c5 + c6
|
||||
|
||||
-- The number 3 (i.e. bit 2) in the "simplex" array is at the position of the largest coordinate.
|
||||
local i1 = rshift(Simplex[c][0], 2)
|
||||
local j1 = rshift(Simplex[c][1], 2)
|
||||
local k1 = rshift(Simplex[c][2], 2)
|
||||
local l1 = rshift(Simplex[c][3], 2)
|
||||
|
||||
-- The number 2 (i.e. bit 1) in the "simplex" array is at the second largest coordinate.
|
||||
local i2 = band(rshift(Simplex[c][0], 1), 1)
|
||||
local j2 = band(rshift(Simplex[c][1], 1), 1)
|
||||
local k2 = band(rshift(Simplex[c][2], 1), 1)
|
||||
local l2 = band(rshift(Simplex[c][3], 1), 1)
|
||||
|
||||
-- The number 1 (i.e. bit 0) in the "simplex" array is at the second smallest coordinate.
|
||||
local i3 = band(Simplex[c][0], 1)
|
||||
local j3 = band(Simplex[c][1], 1)
|
||||
local k3 = band(Simplex[c][2], 1)
|
||||
local l3 = band(Simplex[c][3], 1)
|
||||
|
||||
-- Work out the hashed gradient indices of the five simplex corners
|
||||
-- Sum up and scale the result to cover the range [-1,1]
|
||||
ix, iy, iz, iw = band(ix, 255), band(iy, 255), band(iz, 255), band(iw, 255)
|
||||
|
||||
local n0 = GetN4(ix, iy, iz, iw, x0, y0, z0, w0)
|
||||
local n1 = GetN4(ix + i1, iy + j1, iz + k1, iw + l1, x0 + 0.138196601 - i1, y0 + 0.138196601 - j1, z0 + 0.138196601 - k1, w0 + 0.138196601 - l1) -- G
|
||||
local n2 = GetN4(ix + i2, iy + j2, iz + k2, iw + l2, x0 + 0.276393202 - i2, y0 + 0.276393202 - j2, z0 + 0.276393202 - k2, w0 + 0.276393202 - l2) -- G2
|
||||
local n3 = GetN4(ix + i3, iy + j3, iz + k3, iw + l3, x0 + 0.414589803 - i3, y0 + 0.414589803 - j3, z0 + 0.414589803 - k3, w0 + 0.414589803 - l3) -- G3
|
||||
local n4 = GetN4(ix + 1, iy + 1, iz + 1, iw + 1, x0 - 0.447213595, y0 - 0.447213595, z0 - 0.447213595, w0 - 0.447213595) -- G4
|
||||
|
||||
return 2.210600293 * (n0 + n1 + n2 + n3 + n4)
|
||||
end
|
||||
|
||||
--- Simplex Noise
|
||||
-- @param x
|
||||
-- @param y
|
||||
-- @param z optional
|
||||
-- @param w optional
|
||||
-- @return Noise value in the range [-1, +1]
|
||||
return function(x, y, z, w)
|
||||
if w then
|
||||
return simplex_4d(x, y, z, w)
|
||||
end
|
||||
if z then
|
||||
return simplex_3d(x, y, z)
|
||||
end
|
||||
if y then
|
||||
return simplex_2d(x, y)
|
||||
end
|
||||
error "Simplex requires at least two arguments"
|
||||
end
|
228
libs/cpml/utils.lua
Normal file
228
libs/cpml/utils.lua
Normal file
@ -0,0 +1,228 @@
|
||||
--- Various utility functions
|
||||
-- @module utils
|
||||
|
||||
local modules = (...): gsub('%.[^%.]+$', '') .. "."
|
||||
local vec2 = require(modules .. "vec2")
|
||||
local vec3 = require(modules .. "vec3")
|
||||
local private = require(modules .. "_private_utils")
|
||||
local abs = math.abs
|
||||
local ceil = math.ceil
|
||||
local floor = math.floor
|
||||
local log = math.log
|
||||
local utils = {}
|
||||
|
||||
-- reimplementation of math.frexp, due to its removal from Lua 5.3 :(
|
||||
-- courtesy of airstruck
|
||||
local log2 = log(2)
|
||||
|
||||
local frexp = math.frexp or function(x)
|
||||
if x == 0 then return 0, 0 end
|
||||
local e = floor(log(abs(x)) / log2 + 1)
|
||||
return x / 2 ^ e, e
|
||||
end
|
||||
|
||||
--- Clamps a value within the specified range.
|
||||
-- @param value Input value
|
||||
-- @param min Minimum output value
|
||||
-- @param max Maximum output value
|
||||
-- @return number
|
||||
function utils.clamp(value, min, max)
|
||||
return math.max(math.min(value, max), min)
|
||||
end
|
||||
|
||||
--- Returns `value` if it is equal or greater than |`size`|, or 0.
|
||||
-- @param value
|
||||
-- @param size
|
||||
-- @return number
|
||||
function utils.deadzone(value, size)
|
||||
return abs(value) >= size and value or 0
|
||||
end
|
||||
|
||||
--- Check if value is equal or greater than threshold.
|
||||
-- @param value
|
||||
-- @param threshold
|
||||
-- @return boolean
|
||||
function utils.threshold(value, threshold)
|
||||
-- I know, it barely saves any typing at all.
|
||||
return abs(value) >= threshold
|
||||
end
|
||||
|
||||
--- Check if value is equal or less than threshold.
|
||||
-- @param value
|
||||
-- @param threshold
|
||||
-- @return boolean
|
||||
function utils.tolerance(value, threshold)
|
||||
-- I know, it barely saves any typing at all.
|
||||
return abs(value) <= threshold
|
||||
end
|
||||
|
||||
--- Scales a value from one range to another.
|
||||
-- @param value Input value
|
||||
-- @param min_in Minimum input value
|
||||
-- @param max_in Maximum input value
|
||||
-- @param min_out Minimum output value
|
||||
-- @param max_out Maximum output value
|
||||
-- @return number
|
||||
function utils.map(value, min_in, max_in, min_out, max_out)
|
||||
return ((value) - (min_in)) * ((max_out) - (min_out)) / ((max_in) - (min_in)) + (min_out)
|
||||
end
|
||||
|
||||
--- Linear interpolation.
|
||||
-- Performs linear interpolation between 0 and 1 when `low` < `progress` < `high`.
|
||||
-- @param low value to return when `progress` is 0
|
||||
-- @param high value to return when `progress` is 1
|
||||
-- @param progress (0-1)
|
||||
-- @return number
|
||||
function utils.lerp(low, high, progress)
|
||||
return low * (1 - progress) + high * progress
|
||||
end
|
||||
|
||||
--- Exponential decay
|
||||
-- @param low initial value
|
||||
-- @param high target value
|
||||
-- @param rate portion of the original value remaining per second
|
||||
-- @param dt time delta
|
||||
-- @return number
|
||||
function utils.decay(low, high, rate, dt)
|
||||
return utils.lerp(low, high, 1.0 - math.exp(-rate * dt))
|
||||
end
|
||||
|
||||
--- Hermite interpolation.
|
||||
-- Performs smooth Hermite interpolation between 0 and 1 when `low` < `progress` < `high`.
|
||||
-- @param progress (0-1)
|
||||
-- @param low value to return when `progress` is 0
|
||||
-- @param high value to return when `progress` is 1
|
||||
-- @return number
|
||||
function utils.smoothstep(progress, low, high)
|
||||
local t = utils.clamp((progress - low) / (high - low), 0.0, 1.0)
|
||||
return t * t * (3.0 - 2.0 * t)
|
||||
end
|
||||
|
||||
--- Round number at a given precision.
|
||||
-- Truncates `value` at `precision` points after the decimal (whole number if
|
||||
-- left unspecified).
|
||||
-- @param value
|
||||
-- @param precision
|
||||
-- @return number
|
||||
utils.round = private.round
|
||||
|
||||
--- Wrap `value` around if it exceeds `limit`.
|
||||
-- @param value
|
||||
-- @param limit
|
||||
-- @return number
|
||||
function utils.wrap(value, limit)
|
||||
if value < 0 then
|
||||
value = value + utils.round(((-value/limit)+1))*limit
|
||||
end
|
||||
return value % limit
|
||||
end
|
||||
|
||||
--- Check if a value is a power-of-two.
|
||||
-- Returns true if a number is a valid power-of-two, otherwise false.
|
||||
-- @author undef
|
||||
-- @param value
|
||||
-- @return boolean
|
||||
function utils.is_pot(value)
|
||||
-- found here: https://love2d.org/forums/viewtopic.php?p=182219#p182219
|
||||
-- check if a number is a power-of-two
|
||||
return (frexp(value)) == 0.5
|
||||
end
|
||||
|
||||
--- Check if a value is NaN
|
||||
-- Returns true if a number is not a valid number
|
||||
-- @param value
|
||||
-- @return boolean
|
||||
utils.is_nan = private.is_nan
|
||||
|
||||
-- Originally from vec3
|
||||
function utils.project_on(a, b)
|
||||
local s =
|
||||
(a.x * b.x + a.y * b.y + a.z or 0 * b.z or 0) /
|
||||
(b.x * b.x + b.y * b.y + b.z or 0 * b.z or 0)
|
||||
|
||||
if a.z and b.z then
|
||||
return vec3(
|
||||
b.x * s,
|
||||
b.y * s,
|
||||
b.z * s
|
||||
)
|
||||
end
|
||||
|
||||
return vec2(
|
||||
b.x * s,
|
||||
b.y * s
|
||||
)
|
||||
end
|
||||
|
||||
-- Originally from vec3
|
||||
function utils.project_from(a, b)
|
||||
local s =
|
||||
(b.x * b.x + b.y * b.y + b.z or 0 * b.z or 0) /
|
||||
(a.x * b.x + a.y * b.y + a.z or 0 * b.z or 0)
|
||||
|
||||
if a.z and b.z then
|
||||
return vec3(
|
||||
b.x * s,
|
||||
b.y * s,
|
||||
b.z * s
|
||||
)
|
||||
end
|
||||
|
||||
return vec2(
|
||||
b.x * s,
|
||||
b.y * s
|
||||
)
|
||||
end
|
||||
|
||||
-- Originally from vec3
|
||||
function utils.mirror_on(a, b)
|
||||
local s =
|
||||
(a.x * b.x + a.y * b.y + a.z or 0 * b.z or 0) /
|
||||
(b.x * b.x + b.y * b.y + b.z or 0 * b.z or 0) * 2
|
||||
|
||||
if a.z and b.z then
|
||||
return vec3(
|
||||
b.x * s - a.x,
|
||||
b.y * s - a.y,
|
||||
b.z * s - a.z
|
||||
)
|
||||
end
|
||||
|
||||
return vec2(
|
||||
b.x * s - a.x,
|
||||
b.y * s - a.y
|
||||
)
|
||||
end
|
||||
|
||||
-- Originally from vec3
|
||||
function utils.reflect(i, n)
|
||||
return i - (n * (2 * n:dot(i)))
|
||||
end
|
||||
|
||||
-- Originally from vec3
|
||||
function utils.refract(i, n, ior)
|
||||
local d = n:dot(i)
|
||||
local k = 1 - ior * ior * (1 - d * d)
|
||||
|
||||
if k >= 0 then
|
||||
return (i * ior) - (n * (ior * d + k ^ 0.5))
|
||||
end
|
||||
|
||||
return vec3()
|
||||
end
|
||||
|
||||
--- Get the sign of a number
|
||||
-- returns 1 for positive values, -1 for negative and 0 for zero.
|
||||
-- @param value
|
||||
-- @return number
|
||||
function utils.sign(n)
|
||||
if n > 0 then
|
||||
return 1
|
||||
elseif n < 0 then
|
||||
return -1
|
||||
else
|
||||
return 0
|
||||
end
|
||||
end
|
||||
|
||||
return utils
|
444
libs/cpml/vec2.lua
Normal file
444
libs/cpml/vec2.lua
Normal file
@ -0,0 +1,444 @@
|
||||
--- A 2 component vector.
|
||||
-- @module vec2
|
||||
|
||||
local modules = (...):gsub('%.[^%.]+$', '') .. "."
|
||||
local vec3 = require(modules .. "vec3")
|
||||
local precond = require(modules .. "_private_precond")
|
||||
local private = require(modules .. "_private_utils")
|
||||
local acos = math.acos
|
||||
local atan2 = math.atan2 or math.atan
|
||||
local sqrt = math.sqrt
|
||||
local cos = math.cos
|
||||
local sin = math.sin
|
||||
local vec2 = {}
|
||||
local vec2_mt = {}
|
||||
|
||||
-- Private constructor.
|
||||
local function new(x, y)
|
||||
return setmetatable({
|
||||
x = x or 0,
|
||||
y = y or 0
|
||||
}, vec2_mt)
|
||||
end
|
||||
|
||||
-- Do the check to see if JIT is enabled. If so use the optimized FFI structs.
|
||||
local status, ffi
|
||||
if type(jit) == "table" and jit.status() then
|
||||
status, ffi = pcall(require, "ffi")
|
||||
if status then
|
||||
ffi.cdef "typedef struct { double x, y;} cpml_vec2;"
|
||||
new = ffi.typeof("cpml_vec2")
|
||||
end
|
||||
end
|
||||
|
||||
--- Constants
|
||||
-- @table vec2
|
||||
-- @field unit_x X axis of rotation
|
||||
-- @field unit_y Y axis of rotation
|
||||
-- @field zero Empty vector
|
||||
vec2.unit_x = new(1, 0)
|
||||
vec2.unit_y = new(0, 1)
|
||||
vec2.zero = new(0, 0)
|
||||
|
||||
--- The public constructor.
|
||||
-- @param x Can be of three types: </br>
|
||||
-- number X component
|
||||
-- table {x, y} or {x = x, y = y}
|
||||
-- scalar to fill the vector eg. {x, x}
|
||||
-- @tparam number y Y component
|
||||
-- @treturn vec2 out
|
||||
function vec2.new(x, y)
|
||||
-- number, number
|
||||
if x and y then
|
||||
precond.typeof(x, "number", "new: Wrong argument type for x")
|
||||
precond.typeof(y, "number", "new: Wrong argument type for y")
|
||||
|
||||
return new(x, y)
|
||||
|
||||
-- {x, y} or {x=x, y=y}
|
||||
elseif type(x) == "table" or type(x) == "cdata" then -- table in vanilla lua, cdata in luajit
|
||||
local xx, yy = x.x or x[1], x.y or x[2]
|
||||
precond.typeof(xx, "number", "new: Wrong argument type for x")
|
||||
precond.typeof(yy, "number", "new: Wrong argument type for y")
|
||||
|
||||
return new(xx, yy)
|
||||
|
||||
-- number
|
||||
elseif type(x) == "number" then
|
||||
return new(x, x)
|
||||
else
|
||||
return new()
|
||||
end
|
||||
end
|
||||
|
||||
--- Convert point from polar to cartesian.
|
||||
-- @tparam number radius Radius of the point
|
||||
-- @tparam number theta Angle of the point (in radians)
|
||||
-- @treturn vec2 out
|
||||
function vec2.from_cartesian(radius, theta)
|
||||
return new(radius * cos(theta), radius * sin(theta))
|
||||
end
|
||||
|
||||
--- Clone a vector.
|
||||
-- @tparam vec2 a Vector to be cloned
|
||||
-- @treturn vec2 out
|
||||
function vec2.clone(a)
|
||||
return new(a.x, a.y)
|
||||
end
|
||||
|
||||
--- Add two vectors.
|
||||
-- @tparam vec2 a Left hand operand
|
||||
-- @tparam vec2 b Right hand operand
|
||||
-- @treturn vec2 out
|
||||
function vec2.add(a, b)
|
||||
return new(
|
||||
a.x + b.x,
|
||||
a.y + b.y
|
||||
)
|
||||
end
|
||||
|
||||
--- Subtract one vector from another.
|
||||
-- Order: If a and b are positions, computes the direction and distance from b
|
||||
-- to a.
|
||||
-- @tparam vec2 a Left hand operand
|
||||
-- @tparam vec2 b Right hand operand
|
||||
-- @treturn vec2 out
|
||||
function vec2.sub(a, b)
|
||||
return new(
|
||||
a.x - b.x,
|
||||
a.y - b.y
|
||||
)
|
||||
end
|
||||
|
||||
--- Multiply a vector by another vector.
|
||||
-- Component-size multiplication not matrix multiplication.
|
||||
-- @tparam vec2 a Left hand operand
|
||||
-- @tparam vec2 b Right hand operand
|
||||
-- @treturn vec2 out
|
||||
function vec2.mul(a, b)
|
||||
return new(
|
||||
a.x * b.x,
|
||||
a.y * b.y
|
||||
)
|
||||
end
|
||||
|
||||
--- Divide a vector by another vector.
|
||||
-- Component-size inv multiplication. Like a non-uniform scale().
|
||||
-- @tparam vec2 a Left hand operand
|
||||
-- @tparam vec2 b Right hand operand
|
||||
-- @treturn vec2 out
|
||||
function vec2.div(a, b)
|
||||
return new(
|
||||
a.x / b.x,
|
||||
a.y / b.y
|
||||
)
|
||||
end
|
||||
|
||||
--- Get the normal of a vector.
|
||||
-- @tparam vec2 a Vector to normalize
|
||||
-- @treturn vec2 out
|
||||
function vec2.normalize(a)
|
||||
if a:is_zero() then
|
||||
return new()
|
||||
end
|
||||
return a:scale(1 / a:len())
|
||||
end
|
||||
|
||||
--- Trim a vector to a given length.
|
||||
-- @tparam vec2 a Vector to be trimmed
|
||||
-- @tparam number len Length to trim the vector to
|
||||
-- @treturn vec2 out
|
||||
function vec2.trim(a, len)
|
||||
return a:normalize():scale(math.min(a:len(), len))
|
||||
end
|
||||
|
||||
--- Get the cross product of two vectors.
|
||||
-- Order: Positive if a is clockwise from b. Magnitude is the area spanned by
|
||||
-- the parallelograms that a and b span.
|
||||
-- @tparam vec2 a Left hand operand
|
||||
-- @tparam vec2 b Right hand operand
|
||||
-- @treturn number magnitude
|
||||
function vec2.cross(a, b)
|
||||
return a.x * b.y - a.y * b.x
|
||||
end
|
||||
|
||||
--- Get the dot product of two vectors.
|
||||
-- @tparam vec2 a Left hand operand
|
||||
-- @tparam vec2 b Right hand operand
|
||||
-- @treturn number dot
|
||||
function vec2.dot(a, b)
|
||||
return a.x * b.x + a.y * b.y
|
||||
end
|
||||
|
||||
--- Get the length of a vector.
|
||||
-- @tparam vec2 a Vector to get the length of
|
||||
-- @treturn number len
|
||||
function vec2.len(a)
|
||||
return sqrt(a.x * a.x + a.y * a.y)
|
||||
end
|
||||
|
||||
--- Get the squared length of a vector.
|
||||
-- @tparam vec2 a Vector to get the squared length of
|
||||
-- @treturn number len
|
||||
function vec2.len2(a)
|
||||
return a.x * a.x + a.y * a.y
|
||||
end
|
||||
|
||||
--- Get the distance between two vectors.
|
||||
-- @tparam vec2 a Left hand operand
|
||||
-- @tparam vec2 b Right hand operand
|
||||
-- @treturn number dist
|
||||
function vec2.dist(a, b)
|
||||
local dx = a.x - b.x
|
||||
local dy = a.y - b.y
|
||||
return sqrt(dx * dx + dy * dy)
|
||||
end
|
||||
|
||||
--- Get the squared distance between two vectors.
|
||||
-- @tparam vec2 a Left hand operand
|
||||
-- @tparam vec2 b Right hand operand
|
||||
-- @treturn number dist
|
||||
function vec2.dist2(a, b)
|
||||
local dx = a.x - b.x
|
||||
local dy = a.y - b.y
|
||||
return dx * dx + dy * dy
|
||||
end
|
||||
|
||||
--- Scale a vector by a scalar.
|
||||
-- @tparam vec2 a Left hand operand
|
||||
-- @tparam number b Right hand operand
|
||||
-- @treturn vec2 out
|
||||
function vec2.scale(a, b)
|
||||
return new(
|
||||
a.x * b,
|
||||
a.y * b
|
||||
)
|
||||
end
|
||||
|
||||
--- Rotate a vector.
|
||||
-- @tparam vec2 a Vector to rotate
|
||||
-- @tparam number phi Angle to rotate vector by (in radians)
|
||||
-- @treturn vec2 out
|
||||
function vec2.rotate(a, phi)
|
||||
local c = cos(phi)
|
||||
local s = sin(phi)
|
||||
return new(
|
||||
c * a.x - s * a.y,
|
||||
s * a.x + c * a.y
|
||||
)
|
||||
end
|
||||
|
||||
--- Get the perpendicular vector of a vector.
|
||||
-- @tparam vec2 a Vector to get perpendicular axes from
|
||||
-- @treturn vec2 out
|
||||
function vec2.perpendicular(a)
|
||||
return new(-a.y, a.x)
|
||||
end
|
||||
|
||||
--- Signed angle from one vector to another.
|
||||
-- Rotations from +x to +y are positive.
|
||||
-- @tparam vec2 a Vector
|
||||
-- @tparam vec2 b Vector
|
||||
-- @treturn number angle in (-pi, pi]
|
||||
function vec2.angle_to(a, b)
|
||||
if b then
|
||||
local angle = atan2(b.y, b.x) - atan2(a.y, a.x)
|
||||
-- convert to (-pi, pi]
|
||||
if angle > math.pi then
|
||||
angle = angle - 2 * math.pi
|
||||
elseif angle <= -math.pi then
|
||||
angle = angle + 2 * math.pi
|
||||
end
|
||||
return angle
|
||||
end
|
||||
|
||||
return atan2(a.y, a.x)
|
||||
end
|
||||
|
||||
--- Unsigned angle between two vectors.
|
||||
-- Directionless and thus commutative.
|
||||
-- @tparam vec2 a Vector
|
||||
-- @tparam vec2 b Vector
|
||||
-- @treturn number angle in [0, pi]
|
||||
function vec2.angle_between(a, b)
|
||||
if b then
|
||||
if vec2.is_vec2(a) then
|
||||
return acos(a:dot(b) / (a:len() * b:len()))
|
||||
end
|
||||
|
||||
return acos(vec3.dot(a, b) / (vec3.len(a) * vec3.len(b)))
|
||||
end
|
||||
|
||||
return 0
|
||||
end
|
||||
|
||||
--- Lerp between two vectors.
|
||||
-- @tparam vec2 a Left hand operand
|
||||
-- @tparam vec2 b Right hand operand
|
||||
-- @tparam number s Step value
|
||||
-- @treturn vec2 out
|
||||
function vec2.lerp(a, b, s)
|
||||
return a + (b - a) * s
|
||||
end
|
||||
|
||||
--- Unpack a vector into individual components.
|
||||
-- @tparam vec2 a Vector to unpack
|
||||
-- @treturn number x
|
||||
-- @treturn number y
|
||||
function vec2.unpack(a)
|
||||
return a.x, a.y
|
||||
end
|
||||
|
||||
--- Return the component-wise minimum of two vectors.
|
||||
-- @tparam vec2 a Left hand operand
|
||||
-- @tparam vec2 b Right hand operand
|
||||
-- @treturn vec2 A vector where each component is the lesser value for that component between the two given vectors.
|
||||
function vec2.component_min(a, b)
|
||||
return new(math.min(a.x, b.x), math.min(a.y, b.y))
|
||||
end
|
||||
|
||||
--- Return the component-wise maximum of two vectors.
|
||||
-- @tparam vec2 a Left hand operand
|
||||
-- @tparam vec2 b Right hand operand
|
||||
-- @treturn vec2 A vector where each component is the lesser value for that component between the two given vectors.
|
||||
function vec2.component_max(a, b)
|
||||
return new(math.max(a.x, b.x), math.max(a.y, b.y))
|
||||
end
|
||||
|
||||
|
||||
--- Return a boolean showing if a table is or is not a vec2.
|
||||
-- @tparam vec2 a Vector to be tested
|
||||
-- @treturn boolean is_vec2
|
||||
function vec2.is_vec2(a)
|
||||
if type(a) == "cdata" then
|
||||
return ffi.istype("cpml_vec2", a)
|
||||
end
|
||||
|
||||
return
|
||||
type(a) == "table" and
|
||||
type(a.x) == "number" and
|
||||
type(a.y) == "number"
|
||||
end
|
||||
|
||||
--- Return a boolean showing if a table is or is not a zero vec2.
|
||||
-- @tparam vec2 a Vector to be tested
|
||||
-- @treturn boolean is_zero
|
||||
function vec2.is_zero(a)
|
||||
return a.x == 0 and a.y == 0
|
||||
end
|
||||
|
||||
--- Return whether either value is NaN
|
||||
-- @tparam vec2 a Vector to be tested
|
||||
-- @treturn boolean if x or y is nan
|
||||
function vec2.has_nan(a)
|
||||
return private.is_nan(a.x) or
|
||||
private.is_nan(a.y)
|
||||
end
|
||||
|
||||
--- Convert point from cartesian to polar.
|
||||
-- @tparam vec2 a Vector to convert
|
||||
-- @treturn number radius
|
||||
-- @treturn number theta
|
||||
function vec2.to_polar(a)
|
||||
local radius = sqrt(a.x^2 + a.y^2)
|
||||
local theta = atan2(a.y, a.x)
|
||||
theta = theta > 0 and theta or theta + 2 * math.pi
|
||||
return radius, theta
|
||||
end
|
||||
|
||||
-- Round all components to nearest int (or other precision).
|
||||
-- @tparam vec2 a Vector to round.
|
||||
-- @tparam precision Digits after the decimal (integer if unspecified)
|
||||
-- @treturn vec2 Rounded vector
|
||||
function vec2.round(a, precision)
|
||||
return vec2.new(private.round(a.x, precision), private.round(a.y, precision))
|
||||
end
|
||||
|
||||
-- Negate x axis only of vector.
|
||||
-- @tparam vec2 a Vector to x-flip.
|
||||
-- @treturn vec2 x-flipped vector
|
||||
function vec2.flip_x(a)
|
||||
return vec2.new(-a.x, a.y)
|
||||
end
|
||||
|
||||
-- Negate y axis only of vector.
|
||||
-- @tparam vec2 a Vector to y-flip.
|
||||
-- @treturn vec2 y-flipped vector
|
||||
function vec2.flip_y(a)
|
||||
return vec2.new(a.x, -a.y)
|
||||
end
|
||||
|
||||
-- Convert vec2 to vec3.
|
||||
-- @tparam vec2 a Vector to convert.
|
||||
-- @tparam number the new z component, or nil for 0
|
||||
-- @treturn vec3 Converted vector
|
||||
function vec2.to_vec3(a, z)
|
||||
return vec3(a.x, a.y, z or 0)
|
||||
end
|
||||
|
||||
--- Return a formatted string.
|
||||
-- @tparam vec2 a Vector to be turned into a string
|
||||
-- @treturn string formatted
|
||||
function vec2.to_string(a)
|
||||
return string.format("(%+0.3f,%+0.3f)", a.x, a.y)
|
||||
end
|
||||
|
||||
vec2_mt.__index = vec2
|
||||
vec2_mt.__tostring = vec2.to_string
|
||||
|
||||
function vec2_mt.__call(_, x, y)
|
||||
return vec2.new(x, y)
|
||||
end
|
||||
|
||||
function vec2_mt.__unm(a)
|
||||
return new(-a.x, -a.y)
|
||||
end
|
||||
|
||||
function vec2_mt.__eq(a, b)
|
||||
if not vec2.is_vec2(a) or not vec2.is_vec2(b) then
|
||||
return false
|
||||
end
|
||||
return a.x == b.x and a.y == b.y
|
||||
end
|
||||
|
||||
function vec2_mt.__add(a, b)
|
||||
precond.assert(vec2.is_vec2(a), "__add: Wrong argument type '%s' for left hand operand. (<cpml.vec2> expected)", type(a))
|
||||
precond.assert(vec2.is_vec2(b), "__add: Wrong argument type '%s' for right hand operand. (<cpml.vec2> expected)", type(b))
|
||||
return a:add(b)
|
||||
end
|
||||
|
||||
function vec2_mt.__sub(a, b)
|
||||
precond.assert(vec2.is_vec2(a), "__add: Wrong argument type '%s' for left hand operand. (<cpml.vec2> expected)", type(a))
|
||||
precond.assert(vec2.is_vec2(b), "__add: Wrong argument type '%s' for right hand operand. (<cpml.vec2> expected)", type(b))
|
||||
return a:sub(b)
|
||||
end
|
||||
|
||||
function vec2_mt.__mul(a, b)
|
||||
precond.assert(vec2.is_vec2(a), "__mul: Wrong argument type '%s' for left hand operand. (<cpml.vec2> expected)", type(a))
|
||||
assert(vec2.is_vec2(b) or type(b) == "number", "__mul: Wrong argument type for right hand operand. (<cpml.vec2> or <number> expected)")
|
||||
|
||||
if vec2.is_vec2(b) then
|
||||
return a:mul(b)
|
||||
end
|
||||
|
||||
return a:scale(b)
|
||||
end
|
||||
|
||||
function vec2_mt.__div(a, b)
|
||||
precond.assert(vec2.is_vec2(a), "__div: Wrong argument type '%s' for left hand operand. (<cpml.vec2> expected)", type(a))
|
||||
assert(vec2.is_vec2(b) or type(b) == "number", "__div: Wrong argument type for right hand operand. (<cpml.vec2> or <number> expected)")
|
||||
|
||||
if vec2.is_vec2(b) then
|
||||
return a:div(b)
|
||||
end
|
||||
|
||||
return a:scale(1 / b)
|
||||
end
|
||||
|
||||
if status then
|
||||
xpcall(function() -- Allow this to silently fail; assume failure means someone messed with package.loaded
|
||||
ffi.metatype(new, vec2_mt)
|
||||
end, function() end)
|
||||
end
|
||||
|
||||
return setmetatable({}, vec2_mt)
|
434
libs/cpml/vec3.lua
Normal file
434
libs/cpml/vec3.lua
Normal file
@ -0,0 +1,434 @@
|
||||
--- A 3 component vector.
|
||||
-- @module vec3
|
||||
|
||||
local modules = (...):gsub('%.[^%.]+$', '') .. "."
|
||||
local precond = require(modules .. "_private_precond")
|
||||
local private = require(modules .. "_private_utils")
|
||||
local sqrt = math.sqrt
|
||||
local cos = math.cos
|
||||
local sin = math.sin
|
||||
local vec3 = {}
|
||||
local vec3_mt = {}
|
||||
|
||||
-- Private constructor.
|
||||
local function new(x, y, z)
|
||||
return setmetatable({
|
||||
x = x or 0,
|
||||
y = y or 0,
|
||||
z = z or 0
|
||||
}, vec3_mt)
|
||||
end
|
||||
|
||||
-- Do the check to see if JIT is enabled. If so use the optimized FFI structs.
|
||||
local status, ffi
|
||||
if type(jit) == "table" and jit.status() then
|
||||
status, ffi = pcall(require, "ffi")
|
||||
if status then
|
||||
ffi.cdef "typedef struct { double x, y, z;} cpml_vec3;"
|
||||
new = ffi.typeof("cpml_vec3")
|
||||
end
|
||||
end
|
||||
|
||||
--- Constants
|
||||
-- @table vec3
|
||||
-- @field unit_x X axis of rotation
|
||||
-- @field unit_y Y axis of rotation
|
||||
-- @field unit_z Z axis of rotation
|
||||
-- @field zero Empty vector
|
||||
vec3.unit_x = new(1, 0, 0)
|
||||
vec3.unit_y = new(0, 1, 0)
|
||||
vec3.unit_z = new(0, 0, 1)
|
||||
vec3.zero = new(0, 0, 0)
|
||||
|
||||
--- The public constructor.
|
||||
-- @param x Can be of three types: </br>
|
||||
-- number X component
|
||||
-- table {x, y, z} or {x=x, y=y, z=z}
|
||||
-- scalar To fill the vector eg. {x, x, x}
|
||||
-- @tparam number y Y component
|
||||
-- @tparam number z Z component
|
||||
-- @treturn vec3 out
|
||||
function vec3.new(x, y, z)
|
||||
-- number, number, number
|
||||
if x and y and z then
|
||||
precond.typeof(x, "number", "new: Wrong argument type for x")
|
||||
precond.typeof(y, "number", "new: Wrong argument type for y")
|
||||
precond.typeof(z, "number", "new: Wrong argument type for z")
|
||||
|
||||
return new(x, y, z)
|
||||
|
||||
-- {x, y, z} or {x=x, y=y, z=z}
|
||||
elseif type(x) == "table" or type(x) == "cdata" then -- table in vanilla lua, cdata in luajit
|
||||
local xx, yy, zz = x.x or x[1], x.y or x[2], x.z or x[3]
|
||||
precond.typeof(xx, "number", "new: Wrong argument type for x")
|
||||
precond.typeof(yy, "number", "new: Wrong argument type for y")
|
||||
precond.typeof(zz, "number", "new: Wrong argument type for z")
|
||||
|
||||
return new(xx, yy, zz)
|
||||
|
||||
-- number
|
||||
elseif type(x) == "number" then
|
||||
return new(x, x, x)
|
||||
else
|
||||
return new()
|
||||
end
|
||||
end
|
||||
|
||||
--- Clone a vector.
|
||||
-- @tparam vec3 a Vector to be cloned
|
||||
-- @treturn vec3 out
|
||||
function vec3.clone(a)
|
||||
return new(a.x, a.y, a.z)
|
||||
end
|
||||
|
||||
--- Add two vectors.
|
||||
-- @tparam vec3 a Left hand operand
|
||||
-- @tparam vec3 b Right hand operand
|
||||
-- @treturn vec3 out
|
||||
function vec3.add(a, b)
|
||||
return new(
|
||||
a.x + b.x,
|
||||
a.y + b.y,
|
||||
a.z + b.z
|
||||
)
|
||||
end
|
||||
|
||||
--- Subtract one vector from another.
|
||||
-- Order: If a and b are positions, computes the direction and distance from b
|
||||
-- to a.
|
||||
-- @tparam vec3 a Left hand operand
|
||||
-- @tparam vec3 b Right hand operand
|
||||
-- @treturn vec3 out
|
||||
function vec3.sub(a, b)
|
||||
return new(
|
||||
a.x - b.x,
|
||||
a.y - b.y,
|
||||
a.z - b.z
|
||||
)
|
||||
end
|
||||
|
||||
--- Multiply a vector by another vector.
|
||||
-- Component-wise multiplication not matrix multiplication.
|
||||
-- @tparam vec3 a Left hand operand
|
||||
-- @tparam vec3 b Right hand operand
|
||||
-- @treturn vec3 out
|
||||
function vec3.mul(a, b)
|
||||
return new(
|
||||
a.x * b.x,
|
||||
a.y * b.y,
|
||||
a.z * b.z
|
||||
)
|
||||
end
|
||||
|
||||
--- Divide a vector by another.
|
||||
-- Component-wise inv multiplication. Like a non-uniform scale().
|
||||
-- @tparam vec3 a Left hand operand
|
||||
-- @tparam vec3 b Right hand operand
|
||||
-- @treturn vec3 out
|
||||
function vec3.div(a, b)
|
||||
return new(
|
||||
a.x / b.x,
|
||||
a.y / b.y,
|
||||
a.z / b.z
|
||||
)
|
||||
end
|
||||
|
||||
--- Scale a vector to unit length (1).
|
||||
-- @tparam vec3 a vector to normalize
|
||||
-- @treturn vec3 out
|
||||
function vec3.normalize(a)
|
||||
if a:is_zero() then
|
||||
return new()
|
||||
end
|
||||
return a:scale(1 / a:len())
|
||||
end
|
||||
|
||||
--- Scale a vector to unit length (1), and return the input length.
|
||||
-- @tparam vec3 a vector to normalize
|
||||
-- @treturn vec3 out
|
||||
-- @treturn number input vector length
|
||||
function vec3.normalize_len(a)
|
||||
if a:is_zero() then
|
||||
return new(), 0
|
||||
end
|
||||
local len = a:len()
|
||||
return a:scale(1 / len), len
|
||||
end
|
||||
|
||||
--- Trim a vector to a given length
|
||||
-- @tparam vec3 a vector to be trimmed
|
||||
-- @tparam number len Length to trim the vector to
|
||||
-- @treturn vec3 out
|
||||
function vec3.trim(a, len)
|
||||
return a:normalize():scale(math.min(a:len(), len))
|
||||
end
|
||||
|
||||
--- Get the cross product of two vectors.
|
||||
-- Resulting direction is right-hand rule normal of plane defined by a and b.
|
||||
-- Magnitude is the area spanned by the parallelograms that a and b span.
|
||||
-- Order: Direction determined by right-hand rule.
|
||||
-- @tparam vec3 a Left hand operand
|
||||
-- @tparam vec3 b Right hand operand
|
||||
-- @treturn vec3 out
|
||||
function vec3.cross(a, b)
|
||||
return new(
|
||||
a.y * b.z - a.z * b.y,
|
||||
a.z * b.x - a.x * b.z,
|
||||
a.x * b.y - a.y * b.x
|
||||
)
|
||||
end
|
||||
|
||||
--- Get the dot product of two vectors.
|
||||
-- @tparam vec3 a Left hand operand
|
||||
-- @tparam vec3 b Right hand operand
|
||||
-- @treturn number dot
|
||||
function vec3.dot(a, b)
|
||||
return a.x * b.x + a.y * b.y + a.z * b.z
|
||||
end
|
||||
|
||||
--- Get the length of a vector.
|
||||
-- @tparam vec3 a Vector to get the length of
|
||||
-- @treturn number len
|
||||
function vec3.len(a)
|
||||
return sqrt(a.x * a.x + a.y * a.y + a.z * a.z)
|
||||
end
|
||||
|
||||
--- Get the squared length of a vector.
|
||||
-- @tparam vec3 a Vector to get the squared length of
|
||||
-- @treturn number len
|
||||
function vec3.len2(a)
|
||||
return a.x * a.x + a.y * a.y + a.z * a.z
|
||||
end
|
||||
|
||||
--- Get the distance between two vectors.
|
||||
-- @tparam vec3 a Left hand operand
|
||||
-- @tparam vec3 b Right hand operand
|
||||
-- @treturn number dist
|
||||
function vec3.dist(a, b)
|
||||
local dx = a.x - b.x
|
||||
local dy = a.y - b.y
|
||||
local dz = a.z - b.z
|
||||
return sqrt(dx * dx + dy * dy + dz * dz)
|
||||
end
|
||||
|
||||
--- Get the squared distance between two vectors.
|
||||
-- @tparam vec3 a Left hand operand
|
||||
-- @tparam vec3 b Right hand operand
|
||||
-- @treturn number dist
|
||||
function vec3.dist2(a, b)
|
||||
local dx = a.x - b.x
|
||||
local dy = a.y - b.y
|
||||
local dz = a.z - b.z
|
||||
return dx * dx + dy * dy + dz * dz
|
||||
end
|
||||
|
||||
--- Scale a vector by a scalar.
|
||||
-- @tparam vec3 a Left hand operand
|
||||
-- @tparam number b Right hand operand
|
||||
-- @treturn vec3 out
|
||||
function vec3.scale(a, b)
|
||||
return new(
|
||||
a.x * b,
|
||||
a.y * b,
|
||||
a.z * b
|
||||
)
|
||||
end
|
||||
|
||||
--- Rotate vector about an axis.
|
||||
-- @tparam vec3 a Vector to rotate
|
||||
-- @tparam number phi Angle to rotate vector by (in radians)
|
||||
-- @tparam vec3 axis Axis to rotate by
|
||||
-- @treturn vec3 out
|
||||
function vec3.rotate(a, phi, axis)
|
||||
if not vec3.is_vec3(axis) then
|
||||
return a
|
||||
end
|
||||
|
||||
local u = axis:normalize()
|
||||
local c = cos(phi)
|
||||
local s = sin(phi)
|
||||
|
||||
-- Calculate generalized rotation matrix
|
||||
local m1 = new((c + u.x * u.x * (1 - c)), (u.x * u.y * (1 - c) - u.z * s), (u.x * u.z * (1 - c) + u.y * s))
|
||||
local m2 = new((u.y * u.x * (1 - c) + u.z * s), (c + u.y * u.y * (1 - c)), (u.y * u.z * (1 - c) - u.x * s))
|
||||
local m3 = new((u.z * u.x * (1 - c) - u.y * s), (u.z * u.y * (1 - c) + u.x * s), (c + u.z * u.z * (1 - c)) )
|
||||
|
||||
return new(
|
||||
a:dot(m1),
|
||||
a:dot(m2),
|
||||
a:dot(m3)
|
||||
)
|
||||
end
|
||||
|
||||
--- Get the perpendicular vector of a vector.
|
||||
-- @tparam vec3 a Vector to get perpendicular axes from
|
||||
-- @treturn vec3 out
|
||||
function vec3.perpendicular(a)
|
||||
return new(-a.y, a.x, 0)
|
||||
end
|
||||
|
||||
--- Lerp between two vectors.
|
||||
-- @tparam vec3 a Left hand operand
|
||||
-- @tparam vec3 b Right hand operand
|
||||
-- @tparam number s Step value
|
||||
-- @treturn vec3 out
|
||||
function vec3.lerp(a, b, s)
|
||||
return a + (b - a) * s
|
||||
end
|
||||
|
||||
-- Round all components to nearest int (or other precision).
|
||||
-- @tparam vec3 a Vector to round.
|
||||
-- @tparam precision Digits after the decimal (round numebr if unspecified)
|
||||
-- @treturn vec3 Rounded vector
|
||||
function vec3.round(a, precision)
|
||||
return vec3.new(private.round(a.x, precision), private.round(a.y, precision), private.round(a.z, precision))
|
||||
end
|
||||
|
||||
--- Unpack a vector into individual components.
|
||||
-- @tparam vec3 a Vector to unpack
|
||||
-- @treturn number x
|
||||
-- @treturn number y
|
||||
-- @treturn number z
|
||||
function vec3.unpack(a)
|
||||
return a.x, a.y, a.z
|
||||
end
|
||||
|
||||
--- Return the component-wise minimum of two vectors.
|
||||
-- @tparam vec3 a Left hand operand
|
||||
-- @tparam vec3 b Right hand operand
|
||||
-- @treturn vec3 A vector where each component is the lesser value for that component between the two given vectors.
|
||||
function vec3.component_min(a, b)
|
||||
return new(math.min(a.x, b.x), math.min(a.y, b.y), math.min(a.z, b.z))
|
||||
end
|
||||
|
||||
--- Return the component-wise maximum of two vectors.
|
||||
-- @tparam vec3 a Left hand operand
|
||||
-- @tparam vec3 b Right hand operand
|
||||
-- @treturn vec3 A vector where each component is the lesser value for that component between the two given vectors.
|
||||
function vec3.component_max(a, b)
|
||||
return new(math.max(a.x, b.x), math.max(a.y, b.y), math.max(a.z, b.z))
|
||||
end
|
||||
|
||||
-- Negate x axis only of vector.
|
||||
-- @tparam vec3 a Vector to x-flip.
|
||||
-- @treturn vec3 x-flipped vector
|
||||
function vec3.flip_x(a)
|
||||
return vec3.new(-a.x, a.y, a.z)
|
||||
end
|
||||
|
||||
-- Negate y axis only of vector.
|
||||
-- @tparam vec3 a Vector to y-flip.
|
||||
-- @treturn vec3 y-flipped vector
|
||||
function vec3.flip_y(a)
|
||||
return vec3.new(a.x, -a.y, a.z)
|
||||
end
|
||||
|
||||
-- Negate z axis only of vector.
|
||||
-- @tparam vec3 a Vector to z-flip.
|
||||
-- @treturn vec3 z-flipped vector
|
||||
function vec3.flip_z(a)
|
||||
return vec3.new(a.x, a.y, -a.z)
|
||||
end
|
||||
|
||||
function vec3.angle_to(a, b)
|
||||
local v = a:normalize():dot(b:normalize())
|
||||
return math.acos(v)
|
||||
end
|
||||
|
||||
--- Return a boolean showing if a table is or is not a vec3.
|
||||
-- @tparam vec3 a Vector to be tested
|
||||
-- @treturn boolean is_vec3
|
||||
function vec3.is_vec3(a)
|
||||
if type(a) == "cdata" then
|
||||
return ffi.istype("cpml_vec3", a)
|
||||
end
|
||||
|
||||
return
|
||||
type(a) == "table" and
|
||||
type(a.x) == "number" and
|
||||
type(a.y) == "number" and
|
||||
type(a.z) == "number"
|
||||
end
|
||||
|
||||
--- Return a boolean showing if a table is or is not a zero vec3.
|
||||
-- @tparam vec3 a Vector to be tested
|
||||
-- @treturn boolean is_zero
|
||||
function vec3.is_zero(a)
|
||||
return a.x == 0 and a.y == 0 and a.z == 0
|
||||
end
|
||||
|
||||
--- Return whether any component is NaN
|
||||
-- @tparam vec3 a Vector to be tested
|
||||
-- @treturn boolean if x,y, or z are nan
|
||||
function vec3.has_nan(a)
|
||||
return private.is_nan(a.x) or
|
||||
private.is_nan(a.y) or
|
||||
private.is_nan(a.z)
|
||||
end
|
||||
|
||||
--- Return a formatted string.
|
||||
-- @tparam vec3 a Vector to be turned into a string
|
||||
-- @treturn string formatted
|
||||
function vec3.to_string(a)
|
||||
return string.format("(%+0.3f,%+0.3f,%+0.3f)", a.x, a.y, a.z)
|
||||
end
|
||||
|
||||
vec3_mt.__index = vec3
|
||||
vec3_mt.__tostring = vec3.to_string
|
||||
|
||||
function vec3_mt.__call(_, x, y, z)
|
||||
return vec3.new(x, y, z)
|
||||
end
|
||||
|
||||
function vec3_mt.__unm(a)
|
||||
return new(-a.x, -a.y, -a.z)
|
||||
end
|
||||
|
||||
function vec3_mt.__eq(a, b)
|
||||
if not vec3.is_vec3(a) or not vec3.is_vec3(b) then
|
||||
return false
|
||||
end
|
||||
return a.x == b.x and a.y == b.y and a.z == b.z
|
||||
end
|
||||
|
||||
function vec3_mt.__add(a, b)
|
||||
precond.assert(vec3.is_vec3(a), "__add: Wrong argument type '%s' for left hand operand. (<cpml.vec3> expected)", type(a))
|
||||
precond.assert(vec3.is_vec3(b), "__add: Wrong argument type '%s' for right hand operand. (<cpml.vec3> expected)", type(b))
|
||||
return a:add(b)
|
||||
end
|
||||
|
||||
function vec3_mt.__sub(a, b)
|
||||
precond.assert(vec3.is_vec3(a), "__sub: Wrong argument type '%s' for left hand operand. (<cpml.vec3> expected)", type(a))
|
||||
precond.assert(vec3.is_vec3(b), "__sub: Wrong argument type '%s' for right hand operand. (<cpml.vec3> expected)", type(b))
|
||||
return a:sub(b)
|
||||
end
|
||||
|
||||
function vec3_mt.__mul(a, b)
|
||||
precond.assert(vec3.is_vec3(a), "__mul: Wrong argument type '%s' for left hand operand. (<cpml.vec3> expected)", type(a))
|
||||
precond.assert(vec3.is_vec3(b) or type(b) == "number", "__mul: Wrong argument type '%s' for right hand operand. (<cpml.vec3> or <number> expected)", type(b))
|
||||
|
||||
if vec3.is_vec3(b) then
|
||||
return a:mul(b)
|
||||
end
|
||||
|
||||
return a:scale(b)
|
||||
end
|
||||
|
||||
function vec3_mt.__div(a, b)
|
||||
precond.assert(vec3.is_vec3(a), "__div: Wrong argument type '%s' for left hand operand. (<cpml.vec3> expected)", type(a))
|
||||
precond.assert(vec3.is_vec3(b) or type(b) == "number", "__div: Wrong argument type '%s' for right hand operand. (<cpml.vec3> or <number> expected)", type(b))
|
||||
|
||||
if vec3.is_vec3(b) then
|
||||
return a:div(b)
|
||||
end
|
||||
|
||||
return a:scale(1 / b)
|
||||
end
|
||||
|
||||
if status then
|
||||
xpcall(function() -- Allow this to silently fail; assume failure means someone messed with package.loaded
|
||||
ffi.metatype(new, vec3_mt)
|
||||
end, function() end)
|
||||
end
|
||||
|
||||
return setmetatable({}, vec3_mt)
|
29
load/cpml.lua
Normal file
29
load/cpml.lua
Normal file
@ -0,0 +1,29 @@
|
||||
-- adapted from the init.lua CPML comes with
|
||||
|
||||
cpml = {
|
||||
_LICENSE = "CPML is distributed under the terms of the MIT license. See libs/cpml/LICENSE.md.",
|
||||
_URL = "https://github.com/excessive/cpml",
|
||||
_VERSION = "1.2.9",
|
||||
_DESCRIPTION = "Cirno's Perfect Math Library: Just about everything you need for 3D games. Hopefully."
|
||||
}
|
||||
|
||||
local files = {
|
||||
"bvh",
|
||||
"color",
|
||||
"constants",
|
||||
"intersect",
|
||||
"mat4",
|
||||
"mesh",
|
||||
"octree",
|
||||
"quat",
|
||||
"simplex",
|
||||
"utils",
|
||||
"vec2",
|
||||
"vec3",
|
||||
"bound2",
|
||||
"bound3"
|
||||
}
|
||||
|
||||
for _, file in ipairs(files) do
|
||||
cpml[file] = require('libs.cpml.' .. file)
|
||||
end
|
6
main.lua
6
main.lua
@ -9,6 +9,7 @@ function love.load()
|
||||
require "load.bgm"
|
||||
require "load.save"
|
||||
require "load.bigint"
|
||||
require 'load.cpml'
|
||||
require "load.version"
|
||||
loadSave()
|
||||
require "funcs"
|
||||
@ -26,6 +27,7 @@ function love.load()
|
||||
|
||||
-- init config
|
||||
initConfig()
|
||||
config.depth_3d = 100 -- TODO add a setting for this to the menu
|
||||
|
||||
love.window.setFullscreen(config["fullscreen"])
|
||||
if config.secret then playSE("welcome") end
|
||||
@ -60,8 +62,8 @@ function initModules()
|
||||
end
|
||||
|
||||
function love.draw()
|
||||
love.graphics.setCanvas(GLOBAL_CANVAS)
|
||||
love.graphics.clear()
|
||||
love.graphics.setCanvas{GLOBAL_CANVAS, depth = config.depth_3d > 0}
|
||||
love.graphics.clear(0, 0, 0, 1, false, config.depth_3d > 0)
|
||||
|
||||
love.graphics.push()
|
||||
|
||||
|
@ -2,6 +2,7 @@ local TitleScene = Scene:extend()
|
||||
|
||||
TitleScene.title = "Title"
|
||||
TitleScene.restart_message = false
|
||||
local drawBlock = require "tetris.components.draw_block"
|
||||
|
||||
local main_menu_screens = {
|
||||
ModeSelectScene,
|
||||
@ -81,11 +82,20 @@ function TitleScene:render()
|
||||
|
||||
-- 490, 192
|
||||
for _, b in ipairs(block_offsets) do
|
||||
--[[
|
||||
love.graphics.draw(
|
||||
blocks["2tie"][b.color],
|
||||
490 + b.x, 192 + b.y, 0,
|
||||
2, 2
|
||||
)
|
||||
]]
|
||||
drawBlock(
|
||||
1, 1, 1, 1,
|
||||
blocks["2tie"][b.color],
|
||||
490 + b.x, 192 + b.y,
|
||||
false, false, false, false,
|
||||
true
|
||||
)
|
||||
end
|
||||
|
||||
--[[
|
||||
|
300
tetris/components/draw_block.lua
Normal file
300
tetris/components/draw_block.lua
Normal file
@ -0,0 +1,300 @@
|
||||
local mat4 = cpml.mat4
|
||||
local vec3 = cpml.vec3
|
||||
|
||||
local cube = {
|
||||
front = {},
|
||||
top = {},
|
||||
bottom = {},
|
||||
left = {},
|
||||
right = {}
|
||||
}
|
||||
for scale = 1,2 do
|
||||
cube.front[scale] = love.graphics.newMesh(
|
||||
{
|
||||
{ "VertexPosition", "float", 3 },
|
||||
{ "VertexTexCoord", "float", 2 },
|
||||
{ "VertexColor", "byte", 4}
|
||||
},
|
||||
{
|
||||
{
|
||||
0, 0, 0,
|
||||
0, 0,
|
||||
1, 1, 1
|
||||
},
|
||||
|
||||
{
|
||||
16*scale, 0, 0,
|
||||
1, 0,
|
||||
1, 1, 1,
|
||||
},
|
||||
|
||||
{
|
||||
0, 16*scale, 0,
|
||||
0, 1,
|
||||
1, 1, 1,
|
||||
},
|
||||
|
||||
{
|
||||
16*scale, 16*scale, 0,
|
||||
1, 1,
|
||||
1, 1, 1,
|
||||
},
|
||||
},
|
||||
"strip",
|
||||
"static"
|
||||
)
|
||||
cube.top[scale] = love.graphics.newMesh(
|
||||
{
|
||||
{ "VertexPosition", "float", 3 },
|
||||
{ "VertexTexCoord", "float", 2 },
|
||||
{ "VertexColor", "byte", 4}
|
||||
},
|
||||
{
|
||||
{
|
||||
0, 0, 0,
|
||||
0, 0,
|
||||
1, 1, 1
|
||||
},
|
||||
|
||||
{
|
||||
16*scale, 0, 0,
|
||||
1, 0,
|
||||
1, 1, 1,
|
||||
},
|
||||
|
||||
{
|
||||
0, 0, 16*scale,
|
||||
0, 1,
|
||||
1, 1, 1,
|
||||
},
|
||||
|
||||
{
|
||||
16*scale, 0, 16*scale,
|
||||
1, 1,
|
||||
1, 1, 1,
|
||||
},
|
||||
},
|
||||
"strip",
|
||||
"static"
|
||||
)
|
||||
cube.bottom[scale] = love.graphics.newMesh(
|
||||
{
|
||||
{ "VertexPosition", "float", 3 },
|
||||
{ "VertexTexCoord", "float", 2 },
|
||||
{ "VertexColor", "byte", 4}
|
||||
},
|
||||
{
|
||||
{
|
||||
0, 16*scale, 16*scale,
|
||||
0, 0,
|
||||
1, 1, 1
|
||||
},
|
||||
|
||||
{
|
||||
16*scale, 16*scale, 16*scale,
|
||||
1, 0,
|
||||
1, 1, 1,
|
||||
},
|
||||
|
||||
{
|
||||
0, 16*scale, 0,
|
||||
0, 1,
|
||||
1, 1, 1,
|
||||
},
|
||||
|
||||
{
|
||||
16*scale, 16*scale, 0,
|
||||
1, 1,
|
||||
1, 1, 1,
|
||||
},
|
||||
},
|
||||
"strip",
|
||||
"static"
|
||||
)
|
||||
cube.left[scale] = love.graphics.newMesh(
|
||||
{
|
||||
{ "VertexPosition", "float", 3 },
|
||||
{ "VertexTexCoord", "float", 2 },
|
||||
{ "VertexColor", "byte", 4}
|
||||
},
|
||||
{
|
||||
{
|
||||
0, 0, 0,
|
||||
0, 0,
|
||||
1, 1, 1
|
||||
},
|
||||
|
||||
{
|
||||
0, 16*scale, 0,
|
||||
1, 0,
|
||||
1, 1, 1,
|
||||
},
|
||||
|
||||
{
|
||||
0, 0, 16*scale,
|
||||
0, 1,
|
||||
1, 1, 1,
|
||||
},
|
||||
|
||||
{
|
||||
0, 16*scale, 16*scale,
|
||||
1, 1,
|
||||
1, 1, 1,
|
||||
},
|
||||
},
|
||||
"strip",
|
||||
"static"
|
||||
)
|
||||
cube.right[scale] = love.graphics.newMesh(
|
||||
{
|
||||
{ "VertexPosition", "float", 3 },
|
||||
{ "VertexTexCoord", "float", 2 },
|
||||
{ "VertexColor", "byte", 4}
|
||||
},
|
||||
{
|
||||
{
|
||||
16*scale, 16*scale, 16*scale,
|
||||
0, 0,
|
||||
1, 1, 1
|
||||
},
|
||||
|
||||
{
|
||||
16*scale, 0, 16*scale,
|
||||
1, 0,
|
||||
1, 1, 1,
|
||||
},
|
||||
|
||||
{
|
||||
16*scale, 16*scale, 0,
|
||||
0, 1,
|
||||
1, 1, 1,
|
||||
},
|
||||
|
||||
{
|
||||
16*scale, 0, 0,
|
||||
1, 1,
|
||||
1, 1, 1,
|
||||
},
|
||||
},
|
||||
"strip",
|
||||
"static"
|
||||
)
|
||||
end
|
||||
|
||||
local shader_no_discard = {
|
||||
shader = love.graphics.newShader(
|
||||
[[
|
||||
vec4 effect(vec4 color, Image tex, vec2 texture_coords, vec2 screen_coords) {
|
||||
vec4 texcolor = Texel(tex, texture_coords);
|
||||
return texcolor * color;
|
||||
}
|
||||
]],
|
||||
[[
|
||||
uniform mat4 transform;
|
||||
vec4 position(mat4 transform_projection, vec4 vertex_position) {
|
||||
return transform * TransformMatrix * (vertex_position - vec4(vec2(640.0, 480.0) / 2.0, 0.0, 0.0));
|
||||
}
|
||||
]]
|
||||
),
|
||||
width = -1,
|
||||
height = -1,
|
||||
depth_3d = -1
|
||||
}
|
||||
local shader_discard = {
|
||||
shader = love.graphics.newShader(
|
||||
[[
|
||||
uniform vec4 rect;
|
||||
vec4 effect(vec4 color, Image tex, vec2 texture_coords, vec2 screen_coords) {
|
||||
if (screen_coords.x < rect.x || screen_coords.x > rect.y || screen_coords.y < rect.z || screen_coords.y > rect.w) discard;
|
||||
vec4 texcolor = Texel(tex, texture_coords);
|
||||
return texcolor * color;
|
||||
}
|
||||
]],
|
||||
[[
|
||||
uniform mat4 transform;
|
||||
vec4 position(mat4 transform_projection, vec4 vertex_position) {
|
||||
return transform * TransformMatrix * (vertex_position - vec4(vec2(640.0, 480.0) / 2.0, 0.0, 0.0));
|
||||
}
|
||||
]]
|
||||
),
|
||||
width = -1,
|
||||
height = -1,
|
||||
depth_3d = -1
|
||||
}
|
||||
|
||||
local function set_shader_transform(shader, width, height)
|
||||
local depth = (480 / 2) / math.tan(math.rad(config.depth_3d) / 2)
|
||||
local look_at = mat4():look_at(vec3(0, 0, depth), vec3(0, 0, 0), vec3(0, 1, 0))
|
||||
local perspective = mat4.from_perspective(config.depth_3d, width / height, -0.5, 0.5)
|
||||
local tall = height / 480 > width / 640
|
||||
if tall then
|
||||
local scale_factor = (480 * width) / (640 * height)
|
||||
shader:send("transform", mat4.scale(mat4.new(), perspective * look_at, vec3(scale_factor)))
|
||||
else
|
||||
shader:send("transform", perspective * look_at)
|
||||
end
|
||||
end
|
||||
|
||||
return function(R, G, B, A, image, x, y, left, right, top, bottom, big)
|
||||
local scale = big and 2 or 1
|
||||
if config.depth_3d > 0 then
|
||||
love.graphics.setCanvas{GLOBAL_CANVAS, depth = true}
|
||||
love.graphics.push()
|
||||
love.graphics.origin()
|
||||
love.graphics.setDepthMode("lequal", true)
|
||||
local shader
|
||||
local current_width = love.graphics.getWidth()
|
||||
local current_height = love.graphics.getHeight()
|
||||
if left and right and top and bottom then
|
||||
love.graphics.setShader(shader_discard.shader)
|
||||
local scale_factor = math.min(current_width / 640, current_height / 480)
|
||||
local rect_left = (current_width - scale_factor * 640) / 2 + left * scale_factor
|
||||
local rect_right = (current_width - scale_factor * 640) / 2 + right * scale_factor
|
||||
local rect_top = (current_height - scale_factor * 480) / 2 + top * scale_factor
|
||||
local rect_bottom = (current_height - scale_factor * 480) / 2 + bottom * scale_factor
|
||||
shader_discard.shader:send("rect", {rect_left, rect_right, rect_top, rect_bottom})
|
||||
shader = shader_discard
|
||||
else
|
||||
love.graphics.setShader(shader_no_discard.shader)
|
||||
shader = shader_no_discard
|
||||
end
|
||||
if current_width ~= shader.width or current_height ~= shader.height or config.depth_3d ~= shader.depth_3d then
|
||||
set_shader_transform(shader.shader, current_width, current_height)
|
||||
shader.width = current_width
|
||||
shader.height = current_height
|
||||
shader.depth_3d = config.depth_3d
|
||||
end
|
||||
|
||||
if A ~= 1 or y > 480 / 2 then
|
||||
love.graphics.setColor(R, G, B, A)
|
||||
cube.top[scale]:setTexture(image)
|
||||
love.graphics.draw(cube.top[scale], x, y)
|
||||
end
|
||||
|
||||
love.graphics.setColor(R / 2, G / 2, B / 2, A)
|
||||
if A ~= 1 or y < 480 / 2 then
|
||||
cube.bottom[scale]:setTexture(image)
|
||||
love.graphics.draw(cube.bottom[scale], x, y)
|
||||
end
|
||||
if A ~= 1 or x > 640 / 2 then
|
||||
cube.left[scale]:setTexture(image)
|
||||
love.graphics.draw(cube.left[scale], x, y)
|
||||
end
|
||||
if A ~= 1 or x < 640 / 2 then
|
||||
cube.right[scale]:setTexture(image)
|
||||
love.graphics.draw(cube.right[scale], x, y)
|
||||
end
|
||||
|
||||
love.graphics.setColor(R, G, B, A)
|
||||
cube.front[scale]:setTexture(image)
|
||||
love.graphics.draw(cube.front[scale], x, y)
|
||||
|
||||
love.graphics.setShader()
|
||||
love.graphics.setDepthMode()
|
||||
love.graphics.pop()
|
||||
love.graphics.setCanvas(GLOBAL_CANVAS)
|
||||
else
|
||||
love.graphics.setColor(R, G, B, A)
|
||||
love.graphics.draw(image, x, y, 0, scale, scale)
|
||||
end
|
||||
end
|
@ -2,6 +2,7 @@ local Object = require 'libs.classic'
|
||||
|
||||
local Grid = Object:extend()
|
||||
|
||||
local drawBlock = require 'tetris.components.draw_block'
|
||||
local empty = { skin = "", colour = "" }
|
||||
local oob = { skin = "", colour = "" }
|
||||
local block = { skin = "2tie", colour = "A" }
|
||||
@ -405,23 +406,47 @@ function Grid:update()
|
||||
end
|
||||
|
||||
function Grid:draw()
|
||||
is_3d = is_3d == nil and false or is_3d
|
||||
for y = 5, self.height do
|
||||
for x = 1, self.width do
|
||||
if blocks[self.grid[y][x].skin] and
|
||||
blocks[self.grid[y][x].skin][self.grid[y][x].colour] then
|
||||
if self.grid_age[y][x] < 2 then
|
||||
love.graphics.setColor(1, 1, 1, 1)
|
||||
love.graphics.draw(blocks[self.grid[y][x].skin]["F"], 48+x*16, y*16)
|
||||
drawBlock(1, 1, 1, 1, blocks[self.grid[y][x].skin]["F"], 48+x*16, y*16,
|
||||
48, 48+(self.width+1)*16,
|
||||
5*16, (self.height+1)*16
|
||||
)
|
||||
else
|
||||
local R, G, B, A
|
||||
if self.grid[y][x].colour == "X" then
|
||||
love.graphics.setColor(0, 0, 0, 0)
|
||||
R = 0
|
||||
G = 0
|
||||
B = 0
|
||||
A = 0
|
||||
elseif self.grid[y][x].skin == "bone" then
|
||||
love.graphics.setColor(1, 1, 1, 1)
|
||||
r = 1
|
||||
G = 1
|
||||
B = 1
|
||||
A = 1
|
||||
else
|
||||
love.graphics.setColor(0.5, 0.5, 0.5, 1)
|
||||
R = 0.5
|
||||
G = 0.5
|
||||
B = 0.5
|
||||
A = 1
|
||||
end
|
||||
love.graphics.draw(blocks[self.grid[y][x].skin][self.grid[y][x].colour], 48+x*16, y*16)
|
||||
drawBlock(R, G, B, A, blocks[self.grid[y][x].skin][self.grid[y][x].colour], 48+x*16, y*16,
|
||||
48, 48+(self.width+1)*16,
|
||||
5*16, (self.height+1)*16
|
||||
)
|
||||
end
|
||||
end
|
||||
end
|
||||
end
|
||||
-- everything that needs to be drawn over the blocks *must* be drawn after all blocks have been drawn, due to how 3D works
|
||||
for y = 5, self.height do
|
||||
for x = 1, self.width do
|
||||
if blocks[self.grid[y][x].skin] and
|
||||
blocks[self.grid[y][x].skin][self.grid[y][x].colour] then
|
||||
if self.grid[y][x].skin ~= "bone" and self.grid[y][x].colour ~= "X" then
|
||||
love.graphics.setColor(0.8, 0.8, 0.8, 1)
|
||||
love.graphics.setLineWidth(1)
|
||||
@ -468,9 +493,10 @@ function Grid:drawOutline()
|
||||
end
|
||||
end
|
||||
|
||||
function Grid:drawInvisible(opacity_function, garbage_opacity_function, lock_flash, brightness)
|
||||
function Grid:drawInvisible(opacity_function, garbage_opacity_function, lock_flash, brightness, is_3d)
|
||||
lock_flash = lock_flash == nil and true or lock_flash
|
||||
brightness = brightness == nil and 0.5 or brightness
|
||||
is_3d = is_3d == nil and false or is_3d
|
||||
for y = 5, self.height do
|
||||
for x = 1, self.width do
|
||||
if self.grid[y][x] ~= empty then
|
||||
@ -481,8 +507,17 @@ function Grid:drawInvisible(opacity_function, garbage_opacity_function, lock_fla
|
||||
else
|
||||
opacity = opacity_function(self.grid_age[y][x])
|
||||
end
|
||||
love.graphics.setColor(brightness, brightness, brightness, opacity)
|
||||
love.graphics.draw(blocks[self.grid[y][x].skin][self.grid[y][x].colour], 48+x*16, y*16)
|
||||
drawBlock(brightness, brightness, brightness, opacity, blocks[self.grid[y][x].skin][self.grid[y][x].colour], 48+x*16, y*16,
|
||||
48, 48+(self.width+1)*16,
|
||||
5*16, (self.height+1)*16
|
||||
)
|
||||
end
|
||||
end
|
||||
end
|
||||
-- everything that needs to be drawn over the blocks *must* be drawn after all blocks have been drawn, due to how 3D works
|
||||
for y = 5, self.height do
|
||||
for x = 1, self.width do
|
||||
if self.grid[y][x] ~= empty then
|
||||
if lock_flash then
|
||||
if opacity > 0 and self.grid[y][x].colour ~= "X" then
|
||||
love.graphics.setColor(0.64, 0.64, 0.64)
|
||||
@ -507,29 +542,40 @@ function Grid:drawInvisible(opacity_function, garbage_opacity_function, lock_fla
|
||||
end
|
||||
end
|
||||
|
||||
function Grid:drawCustom(colour_function, gamestate)
|
||||
--[[
|
||||
colour_function: (game, block, x, y, age) -> (R, G, B, A, outlineA)
|
||||
When called, calls the supplied function on every block passing the block itself as argument
|
||||
as well as coordinates and the grid_age value of the same cell.
|
||||
Should return a RGBA colour for the block, as well as the opacity of the stack outline (0 for no outline).
|
||||
|
||||
gamestate: the gamemode instance itself to pass in colour_function
|
||||
]]
|
||||
function Grid:drawCustom(colour_function, gamestate, is_3d)
|
||||
--[[
|
||||
colour_function: (game, block, x, y, age) -> (R, G, B, A, outlineA)
|
||||
When called, calls the supplied function on every block passing the block itself as argument
|
||||
as well as coordinates and the grid_age value of the same cell.
|
||||
Should return a RGBA colour for the block, as well as the opacity of the stack outline (0 for no outline).
|
||||
|
||||
gamestate: the gamemode instance itself to pass in colour_function
|
||||
]]
|
||||
is_3d = is_3d == nil and false or is_3d
|
||||
for y = 5, self.height do
|
||||
for x = 1, self.width do
|
||||
local block = self.grid[y][x]
|
||||
local block = self.grid[y][x]
|
||||
if block ~= empty then
|
||||
local R, G, B, A, outline = colour_function(gamestate, block, x, y, self.grid_age[y][x])
|
||||
local R, G, B, A, outline = colour_function(gamestate, block, x, y, self.grid_age[y][x])
|
||||
if self.grid[y][x].colour == "X" then
|
||||
A = 0
|
||||
end
|
||||
love.graphics.setColor(R, G, B, A)
|
||||
love.graphics.draw(blocks[self.grid[y][x].skin][self.grid[y][x].colour], 48+x*16, y*16)
|
||||
if outline > 0 and self.grid[y][x].colour ~= "X" then
|
||||
love.graphics.setColor(0.64, 0.64, 0.64, outline)
|
||||
love.graphics.setLineWidth(1)
|
||||
if y > 5 and self.grid[y-1][x] == empty or self.grid[y-1][x].colour == "X" then
|
||||
drawBlock(R, G, B, A, blocks[self.grid[y][x].skin][self.grid[y][x].colour], 48+x*16, y*16,
|
||||
48, 48+(self.width+1)*16,
|
||||
5*16, (self.height+1)*16
|
||||
)
|
||||
end
|
||||
end
|
||||
end
|
||||
-- everything that needs to be drawn over the blocks *must* be drawn after all blocks have been drawn, due to how 3D works
|
||||
for y = 5, self.height do
|
||||
for x = 1, self.width do
|
||||
local block = self.grid[y][x]
|
||||
if block ~= empty then
|
||||
if outline > 0 and self.grid[y][x].colour ~= "X" then
|
||||
love.graphics.setColor(0.64, 0.64, 0.64, outline)
|
||||
love.graphics.setLineWidth(1)
|
||||
if y > 5 and self.grid[y-1][x] == empty or self.grid[y-1][x].colour == "X" then
|
||||
love.graphics.line(48.0+x*16, -0.5+y*16, 64.0+x*16, -0.5+y*16)
|
||||
end
|
||||
if y < self.height and self.grid[y+1][x] == empty or
|
||||
@ -542,7 +588,7 @@ function Grid:drawCustom(colour_function, gamestate)
|
||||
if x < self.width and self.grid[y][x+1] == empty then
|
||||
love.graphics.line(64.5+x*16, -0.0+y*16, 64.5+x*16, 16.0+y*16)
|
||||
end
|
||||
end
|
||||
end
|
||||
end
|
||||
end
|
||||
end
|
||||
|
@ -2,6 +2,8 @@ local Object = require 'libs.classic'
|
||||
|
||||
local Piece = Object:extend()
|
||||
|
||||
local drawBlock = require 'tetris.components.draw_block'
|
||||
|
||||
function Piece:new(shape, rotation, position, block_offsets, gravity, lock_delay, skin, colour, big)
|
||||
self.shape = shape
|
||||
self.rotation = rotation
|
||||
@ -157,7 +159,6 @@ end
|
||||
function Piece:draw(opacity, brightness, grid, partial_das)
|
||||
if opacity == nil then opacity = 1 end
|
||||
if brightness == nil then brightness = 1 end
|
||||
love.graphics.setColor(brightness, brightness, brightness, opacity)
|
||||
local offsets = self:getBlockOffsets()
|
||||
local gravity_offset = 0
|
||||
if config.gamesettings.smooth_movement == 1 and
|
||||
@ -168,16 +169,24 @@ function Piece:draw(opacity, brightness, grid, partial_das)
|
||||
for index, offset in pairs(offsets) do
|
||||
local x = self.position.x + offset.x
|
||||
local y = self.position.y + offset.y
|
||||
if self.big then
|
||||
love.graphics.draw(
|
||||
local scale = self.big and 2 or 1
|
||||
if grid ~= nil then
|
||||
drawBlock(
|
||||
brightness, brightness, brightness, opacity,
|
||||
blocks[self.skin][self.colour],
|
||||
64+x*32+partial_das*2, 16+y*32+gravity_offset*2,
|
||||
0, 2, 2
|
||||
64 + (x*16+partial_das)*scale, 16 + (y*16+gravity_offset)*scale,
|
||||
48, 48+(grid.width+1)*16,
|
||||
0, (grid.height+1)*16,
|
||||
self.big
|
||||
)
|
||||
else
|
||||
love.graphics.draw(
|
||||
drawBlock(
|
||||
brightness, brightness, brightness, opacity,
|
||||
blocks[self.skin][self.colour],
|
||||
64+x*16+partial_das, 16+y*16+gravity_offset
|
||||
64 + (x*16+partial_das)*scale, 16 + (y*16+gravity_offset)*scale,
|
||||
false, false,
|
||||
false, false,
|
||||
self.big
|
||||
)
|
||||
end
|
||||
end
|
||||
|
@ -5,6 +5,7 @@ local playedReadySE = false
|
||||
local playedGoSE = false
|
||||
|
||||
local Grid = require 'tetris.components.grid'
|
||||
local drawBlock = require 'tetris.components.draw_block'
|
||||
local Randomizer = require 'tetris.randomizers.randomizer'
|
||||
local BagRandomizer = require 'tetris.randomizers.bag'
|
||||
local binser = require 'libs.binser'
|
||||
@ -787,13 +788,12 @@ function GameMode:drawLineClearAnimation()
|
||||
for y, row in pairs(self.cleared_block_table) do
|
||||
for x, block in pairs(row) do
|
||||
local animation_table = self:animation(x, y, block.skin, block.colour)
|
||||
love.graphics.setColor(
|
||||
animation_table[1], animation_table[2],
|
||||
animation_table[3], animation_table[4]
|
||||
)
|
||||
love.graphics.draw(
|
||||
drawBlock(
|
||||
animation_table[1], animation_table[2], animation_table[3], animation_table[4],
|
||||
blocks[animation_table[5]][animation_table[6]],
|
||||
animation_table[7], animation_table[8]
|
||||
animation_table[7], animation_table[8],
|
||||
48, 48+(self.grid.width+1)*16,
|
||||
5*16, (self.grid.height+1)*16
|
||||
)
|
||||
end
|
||||
end
|
||||
@ -820,7 +820,7 @@ function GameMode:drawGhostPiece(ruleset)
|
||||
local ghost_piece = self.piece:withOffset({x=0, y=0})
|
||||
ghost_piece.ghost = true
|
||||
ghost_piece:dropToBottom(self.grid)
|
||||
ghost_piece:draw(0.5)
|
||||
ghost_piece:draw(0.5, 1, self.grid)
|
||||
end
|
||||
|
||||
function GameMode:drawNextQueue(ruleset)
|
||||
@ -837,7 +837,11 @@ function GameMode:drawNextQueue(ruleset)
|
||||
for index, offset in pairs(offsets) do
|
||||
local x = offset.x + ruleset:getDrawOffset(piece, rotation).x + ruleset.spawn_positions[piece].x
|
||||
local y = offset.y + ruleset:getDrawOffset(piece, rotation).y + 4.7
|
||||
love.graphics.draw(blocks[skin][colourscheme[piece]], pos_x+x*16, pos_y+y*16)
|
||||
drawBlock(
|
||||
1, 1, 1, 1,
|
||||
blocks[skin][colourscheme[piece]],
|
||||
pos_x+x*16, pos_y+y*16
|
||||
)
|
||||
end
|
||||
end
|
||||
for i = 1, self.next_queue_length do
|
||||
|
Loading…
Reference in New Issue
Block a user