--- Simplex Noise -- @module simplex -- -- Based on code in "Simplex noise demystified", by Stefan Gustavson -- www.itn.liu.se/~stegu/simplexnoise/simplexnoise.pdf -- -- Thanks to Mike Pall for some cleanup and improvements (and for LuaJIT!) -- -- Permission is hereby granted, free of charge, to any person obtaining -- a copy of this software and associated documentation files (the -- "Software"), to deal in the Software without restriction, including -- without limitation the rights to use, copy, modify, merge, publish, -- distribute, sublicense, and/or sell copies of the Software, and to -- permit persons to whom the Software is furnished to do so, subject to -- the following conditions: -- -- The above copyright notice and this permission notice shall be -- included in all copies or substantial portions of the Software. -- -- THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, -- EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF -- MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. -- IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY -- CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, -- TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE -- SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. -- -- [ MIT license: http://www.opensource.org/licenses/mit-license.php ] -- if _G.love and _G.love.math then return love.math.noise end -- Bail out with dummy module if FFI is missing. local has_ffi, ffi = pcall(require, "ffi") if not has_ffi then return function() return 0 end end -- Modules -- local bit = require("bit") -- Imports -- local band = bit.band local bor = bit.bor local floor = math.floor local lshift = bit.lshift local max = math.max local rshift = bit.rshift -- Permutation of 0-255, replicated to allow easy indexing with sums of two bytes -- local Perms = ffi.new("uint8_t[512]", { 151, 160, 137, 91, 90, 15, 131, 13, 201, 95, 96, 53, 194, 233, 7, 225, 140, 36, 103, 30, 69, 142, 8, 99, 37, 240, 21, 10, 23, 190, 6, 148, 247, 120, 234, 75, 0, 26, 197, 62, 94, 252, 219, 203, 117, 35, 11, 32, 57, 177, 33, 88, 237, 149, 56, 87, 174, 20, 125, 136, 171, 168, 68, 175, 74, 165, 71, 134, 139, 48, 27, 166, 77, 146, 158, 231, 83, 111, 229, 122, 60, 211, 133, 230, 220, 105, 92, 41, 55, 46, 245, 40, 244, 102, 143, 54, 65, 25, 63, 161, 1, 216, 80, 73, 209, 76, 132, 187, 208, 89, 18, 169, 200, 196, 135, 130, 116, 188, 159, 86, 164, 100, 109, 198, 173, 186, 3, 64, 52, 217, 226, 250, 124, 123, 5, 202, 38, 147, 118, 126, 255, 82, 85, 212, 207, 206, 59, 227, 47, 16, 58, 17, 182, 189, 28, 42, 223, 183, 170, 213, 119, 248, 152, 2, 44, 154, 163, 70, 221, 153, 101, 155, 167, 43, 172, 9, 129, 22, 39, 253, 19, 98, 108, 110, 79, 113, 224, 232, 178, 185, 112, 104, 218, 246, 97, 228, 251, 34, 242, 193, 238, 210, 144, 12, 191, 179, 162, 241, 81, 51, 145, 235, 249, 14, 239, 107, 49, 192, 214, 31, 181, 199, 106, 157, 184, 84, 204, 176, 115, 121, 50, 45, 127, 4, 150, 254, 138, 236, 205, 93, 222, 114, 67, 29, 24, 72, 243, 141, 128, 195, 78, 66, 215, 61, 156, 180 }) -- The above, mod 12 for each element -- local Perms12 = ffi.new("uint8_t[512]") for i = 0, 255 do local x = Perms[i] % 12 Perms[i + 256], Perms12[i], Perms12[i + 256] = Perms[i], x, x end -- Gradients for 2D, 3D case -- local Grads3 = ffi.new("const double[12][3]", { 1, 1, 0 }, { -1, 1, 0 }, { 1, -1, 0 }, { -1, -1, 0 }, { 1, 0, 1 }, { -1, 0, 1 }, { 1, 0, -1 }, { -1, 0, -1 }, { 0, 1, 1 }, { 0, -1, 1 }, { 0, 1, -1 }, { 0, -1, -1 } ) -- 2D weight contribution local function GetN2(bx, by, x, y) local t = .5 - x * x - y * y local index = Perms12[bx + Perms[by]] return max(0, (t * t) * (t * t)) * (Grads3[index][0] * x + Grads3[index][1] * y) end local function simplex_2d(x, y) --[[ 2D skew factors: F = (math.sqrt(3) - 1) / 2 G = (3 - math.sqrt(3)) / 6 G2 = 2 * G - 1 ]] -- Skew the input space to determine which simplex cell we are in. local s = (x + y) * 0.366025403 -- F local ix, iy = floor(x + s), floor(y + s) -- Unskew the cell origin back to (x, y) space. local t = (ix + iy) * 0.211324865 -- G local x0 = x + t - ix local y0 = y + t - iy -- Calculate the contribution from the two fixed corners. -- A step of (1,0) in (i,j) means a step of (1-G,-G) in (x,y), and -- A step of (0,1) in (i,j) means a step of (-G,1-G) in (x,y). ix, iy = band(ix, 255), band(iy, 255) local n0 = GetN2(ix, iy, x0, y0) local n2 = GetN2(ix + 1, iy + 1, x0 - 0.577350270, y0 - 0.577350270) -- G2 --[[ Determine other corner based on simplex (equilateral triangle) we are in: if x0 > y0 then ix, x1 = ix + 1, x1 - 1 else iy, y1 = iy + 1, y1 - 1 end ]] local xi = rshift(floor(y0 - x0), 31) -- y0 < x0 local n1 = GetN2(ix + xi, iy + (1 - xi), x0 + 0.211324865 - xi, y0 - 0.788675135 + xi) -- x0 + G - xi, y0 + G - (1 - xi) -- Add contributions from each corner to get the final noise value. -- The result is scaled to return values in the interval [-1,1]. return 70.1480580019 * (n0 + n1 + n2) end -- 3D weight contribution local function GetN3(ix, iy, iz, x, y, z) local t = .6 - x * x - y * y - z * z local index = Perms12[ix + Perms[iy + Perms[iz]]] return max(0, (t * t) * (t * t)) * (Grads3[index][0] * x + Grads3[index][1] * y + Grads3[index][2] * z) end local function simplex_3d(x, y, z) --[[ 3D skew factors: F = 1 / 3 G = 1 / 6 G2 = 2 * G G3 = 3 * G - 1 ]] -- Skew the input space to determine which simplex cell we are in. local s = (x + y + z) * 0.333333333 -- F local ix, iy, iz = floor(x + s), floor(y + s), floor(z + s) -- Unskew the cell origin back to (x, y, z) space. local t = (ix + iy + iz) * 0.166666667 -- G local x0 = x + t - ix local y0 = y + t - iy local z0 = z + t - iz -- Calculate the contribution from the two fixed corners. -- A step of (1,0,0) in (i,j,k) means a step of (1-G,-G,-G) in (x,y,z); -- a step of (0,1,0) in (i,j,k) means a step of (-G,1-G,-G) in (x,y,z); -- a step of (0,0,1) in (i,j,k) means a step of (-G,-G,1-G) in (x,y,z). ix, iy, iz = band(ix, 255), band(iy, 255), band(iz, 255) local n0 = GetN3(ix, iy, iz, x0, y0, z0) local n3 = GetN3(ix + 1, iy + 1, iz + 1, x0 - 0.5, y0 - 0.5, z0 - 0.5) -- G3 --[[ Determine other corners based on simplex (skewed tetrahedron) we are in: if x0 >= y0 then -- ~A if y0 >= z0 then -- ~A and ~B i1, j1, k1, i2, j2, k2 = 1, 0, 0, 1, 1, 0 elseif x0 >= z0 then -- ~A and B and ~C i1, j1, k1, i2, j2, k2 = 1, 0, 0, 1, 0, 1 else -- ~A and B and C i1, j1, k1, i2, j2, k2 = 0, 0, 1, 1, 0, 1 end else -- A if y0 < z0 then -- A and B i1, j1, k1, i2, j2, k2 = 0, 0, 1, 0, 1, 1 elseif x0 < z0 then -- A and ~B and C i1, j1, k1, i2, j2, k2 = 0, 1, 0, 0, 1, 1 else -- A and ~B and ~C i1, j1, k1, i2, j2, k2 = 0, 1, 0, 1, 1, 0 end end ]] local xLy = rshift(floor(x0 - y0), 31) -- x0 < y0 local yLz = rshift(floor(y0 - z0), 31) -- y0 < z0 local xLz = rshift(floor(x0 - z0), 31) -- x0 < z0 local i1 = band(1 - xLy, bor(1 - yLz, 1 - xLz)) -- x0 >= y0 and (y0 >= z0 or x0 >= z0) local j1 = band(xLy, 1 - yLz) -- x0 < y0 and y0 >= z0 local k1 = band(yLz, bor(xLy, xLz)) -- y0 < z0 and (x0 < y0 or x0 < z0) local i2 = bor(1 - xLy, band(1 - yLz, 1 - xLz)) -- x0 >= y0 or (y0 >= z0 and x0 >= z0) local j2 = bor(xLy, 1 - yLz) -- x0 < y0 or y0 >= z0 local k2 = bor(band(1 - xLy, yLz), band(xLy, bor(yLz, xLz))) -- (x0 >= y0 and y0 < z0) or (x0 < y0 and (y0 < z0 or x0 < z0)) local n1 = GetN3(ix + i1, iy + j1, iz + k1, x0 + 0.166666667 - i1, y0 + 0.166666667 - j1, z0 + 0.166666667 - k1) -- G local n2 = GetN3(ix + i2, iy + j2, iz + k2, x0 + 0.333333333 - i2, y0 + 0.333333333 - j2, z0 + 0.333333333 - k2) -- G2 -- Add contributions from each corner to get the final noise value. -- The result is scaled to stay just inside [-1,1] return 28.452842 * (n0 + n1 + n2 + n3) end -- Gradients for 4D case -- local Grads4 = ffi.new("const double[32][4]", { 0, 1, 1, 1 }, { 0, 1, 1, -1 }, { 0, 1, -1, 1 }, { 0, 1, -1, -1 }, { 0, -1, 1, 1 }, { 0, -1, 1, -1 }, { 0, -1, -1, 1 }, { 0, -1, -1, -1 }, { 1, 0, 1, 1 }, { 1, 0, 1, -1 }, { 1, 0, -1, 1 }, { 1, 0, -1, -1 }, { -1, 0, 1, 1 }, { -1, 0, 1, -1 }, { -1, 0, -1, 1 }, { -1, 0, -1, -1 }, { 1, 1, 0, 1 }, { 1, 1, 0, -1 }, { 1, -1, 0, 1 }, { 1, -1, 0, -1 }, { -1, 1, 0, 1 }, { -1, 1, 0, -1 }, { -1, -1, 0, 1 }, { -1, -1, 0, -1 }, { 1, 1, 1, 0 }, { 1, 1, -1, 0 }, { 1, -1, 1, 0 }, { 1, -1, -1, 0 }, { -1, 1, 1, 0 }, { -1, 1, -1, 0 }, { -1, -1, 1, 0 }, { -1, -1, -1, 0 } ) -- 4D weight contribution local function GetN4(ix, iy, iz, iw, x, y, z, w) local t = .6 - x * x - y * y - z * z - w * w local index = band(Perms[ix + Perms[iy + Perms[iz + Perms[iw]]]], 0x1F) return max(0, (t * t) * (t * t)) * (Grads4[index][0] * x + Grads4[index][1] * y + Grads4[index][2] * z + Grads4[index][3] * w) end -- A lookup table to traverse the simplex around a given point in 4D. -- Details can be found where this table is used, in the 4D noise method. local Simplex = ffi.new("uint8_t[64][4]", { 0, 1, 2, 3 }, { 0, 1, 3, 2 }, {}, { 0, 2, 3, 1 }, {}, {}, {}, { 1, 2, 3 }, { 0, 2, 1, 3 }, {}, { 0, 3, 1, 2 }, { 0, 3, 2, 1 }, {}, {}, {}, { 1, 3, 2 }, {}, {}, {}, {}, {}, {}, {}, {}, { 1, 2, 0, 3 }, {}, { 1, 3, 0, 2 }, {}, {}, {}, { 2, 3, 0, 1 }, { 2, 3, 1 }, { 1, 0, 2, 3 }, { 1, 0, 3, 2 }, {}, {}, {}, { 2, 0, 3, 1 }, {}, { 2, 1, 3 }, {}, {}, {}, {}, {}, {}, {}, {}, { 2, 0, 1, 3 }, {}, {}, {}, { 3, 0, 1, 2 }, { 3, 0, 2, 1 }, {}, { 3, 1, 2 }, { 2, 1, 0, 3 }, {}, {}, {}, { 3, 1, 0, 2 }, {}, { 3, 2, 0, 1 }, { 3, 2, 1 } ) -- Convert the above indices to masks that can be shifted / anded into offsets -- for i = 0, 63 do Simplex[i][0] = lshift(1, Simplex[i][0]) - 1 Simplex[i][1] = lshift(1, Simplex[i][1]) - 1 Simplex[i][2] = lshift(1, Simplex[i][2]) - 1 Simplex[i][3] = lshift(1, Simplex[i][3]) - 1 end local function simplex_4d(x, y, z, w) --[[ 4D skew factors: F = (math.sqrt(5) - 1) / 4 G = (5 - math.sqrt(5)) / 20 G2 = 2 * G G3 = 3 * G G4 = 4 * G - 1 ]] -- Skew the input space to determine which simplex cell we are in. local s = (x + y + z + w) * 0.309016994 -- F local ix, iy, iz, iw = floor(x + s), floor(y + s), floor(z + s), floor(w + s) -- Unskew the cell origin back to (x, y, z) space. local t = (ix + iy + iz + iw) * 0.138196601 -- G local x0 = x + t - ix local y0 = y + t - iy local z0 = z + t - iz local w0 = w + t - iw -- For the 4D case, the simplex is a 4D shape I won't even try to describe. -- To find out which of the 24 possible simplices we're in, we need to -- determine the magnitude ordering of x0, y0, z0 and w0. -- The method below is a good way of finding the ordering of x,y,z,w and -- then find the correct traversal order for the simplex we�re in. -- First, six pair-wise comparisons are performed between each possible pair -- of the four coordinates, and the results are used to add up binary bits -- for an integer index. local c1 = band(rshift(floor(y0 - x0), 26), 32) local c2 = band(rshift(floor(z0 - x0), 27), 16) local c3 = band(rshift(floor(z0 - y0), 28), 8) local c4 = band(rshift(floor(w0 - x0), 29), 4) local c5 = band(rshift(floor(w0 - y0), 30), 2) local c6 = rshift(floor(w0 - z0), 31) -- Simplex[c] is a 4-vector with the numbers 0, 1, 2 and 3 in some order. -- Many values of c will never occur, since e.g. x>y>z>w makes x