cambridge/libs/cpml/intersect.lua
2022-07-04 21:05:40 -07:00

710 lines
18 KiB
Lua

--- Various geometric intersections
-- @module intersect
local modules = (...):gsub('%.[^%.]+$', '') .. "."
local constants = require(modules .. "constants")
local mat4 = require(modules .. "mat4")
local vec3 = require(modules .. "vec3")
local utils = require(modules .. "utils")
local DBL_EPSILON = constants.DBL_EPSILON
local sqrt = math.sqrt
local abs = math.abs
local min = math.min
local max = math.max
local intersect = {}
-- https://blogs.msdn.microsoft.com/rezanour/2011/08/07/barycentric-coordinates-and-point-in-triangle-tests/
-- point is a vec3
-- triangle[1] is a vec3
-- triangle[2] is a vec3
-- triangle[3] is a vec3
function intersect.point_triangle(point, triangle)
local u = triangle[2] - triangle[1]
local v = triangle[3] - triangle[1]
local w = point - triangle[1]
local vw = v:cross(w)
local vu = v:cross(u)
if vw:dot(vu) < 0 then
return false
end
local uw = u:cross(w)
local uv = u:cross(v)
if uw:dot(uv) < 0 then
return false
end
local d = uv:len()
local r = vw:len() / d
local t = uw:len() / d
return r + t <= 1
end
-- point is a vec3
-- aabb.min is a vec3
-- aabb.max is a vec3
function intersect.point_aabb(point, aabb)
return
aabb.min.x <= point.x and
aabb.max.x >= point.x and
aabb.min.y <= point.y and
aabb.max.y >= point.y and
aabb.min.z <= point.z and
aabb.max.z >= point.z
end
-- point is a vec3
-- frustum.left is a plane { a, b, c, d }
-- frustum.right is a plane { a, b, c, d }
-- frustum.bottom is a plane { a, b, c, d }
-- frustum.top is a plane { a, b, c, d }
-- frustum.near is a plane { a, b, c, d }
-- frustum.far is a plane { a, b, c, d }
function intersect.point_frustum(point, frustum)
local x, y, z = point:unpack()
local planes = {
frustum.left,
frustum.right,
frustum.bottom,
frustum.top,
frustum.near,
frustum.far or false
}
-- Skip the last test for infinite projections, it'll never fail.
if not planes[6] then
table.remove(planes)
end
local dot
for i = 1, #planes do
dot = planes[i].a * x + planes[i].b * y + planes[i].c * z + planes[i].d
if dot <= 0 then
return false
end
end
return true
end
-- http://www.lighthouse3d.com/tutorials/maths/ray-triangle-intersection/
-- ray.position is a vec3
-- ray.direction is a vec3
-- triangle[1] is a vec3
-- triangle[2] is a vec3
-- triangle[3] is a vec3
-- backface_cull is a boolean (optional)
function intersect.ray_triangle(ray, triangle, backface_cull)
local e1 = triangle[2] - triangle[1]
local e2 = triangle[3] - triangle[1]
local h = ray.direction:cross(e2)
local a = h:dot(e1)
-- if a is negative, ray hits the backface
if backface_cull and a < 0 then
return false
end
-- if a is too close to 0, ray does not intersect triangle
if abs(a) <= DBL_EPSILON then
return false
end
local f = 1 / a
local s = ray.position - triangle[1]
local u = s:dot(h) * f
-- ray does not intersect triangle
if u < 0 or u > 1 then
return false
end
local q = s:cross(e1)
local v = ray.direction:dot(q) * f
-- ray does not intersect triangle
if v < 0 or u + v > 1 then
return false
end
-- at this stage we can compute t to find out where
-- the intersection point is on the line
local t = q:dot(e2) * f
-- return position of intersection and distance from ray origin
if t >= DBL_EPSILON then
return ray.position + ray.direction * t, t
end
-- ray does not intersect triangle
return false
end
-- https://gamedev.stackexchange.com/questions/96459/fast-ray-sphere-collision-code
-- ray.position is a vec3
-- ray.direction is a vec3
-- sphere.position is a vec3
-- sphere.radius is a number
function intersect.ray_sphere(ray, sphere)
local offset = ray.position - sphere.position
local b = offset:dot(ray.direction)
local c = offset:dot(offset) - sphere.radius * sphere.radius
-- ray's position outside sphere (c > 0)
-- ray's direction pointing away from sphere (b > 0)
if c > 0 and b > 0 then
return false
end
local discr = b * b - c
-- negative discriminant
if discr < 0 then
return false
end
-- Clamp t to 0
local t = -b - sqrt(discr)
t = t < 0 and 0 or t
-- Return collision point and distance from ray origin
return ray.position + ray.direction * t, t
end
-- http://gamedev.stackexchange.com/a/18459
-- ray.position is a vec3
-- ray.direction is a vec3
-- aabb.min is a vec3
-- aabb.max is a vec3
function intersect.ray_aabb(ray, aabb)
local dir = ray.direction:normalize()
local dirfrac = vec3(
1 / dir.x,
1 / dir.y,
1 / dir.z
)
local t1 = (aabb.min.x - ray.position.x) * dirfrac.x
local t2 = (aabb.max.x - ray.position.x) * dirfrac.x
local t3 = (aabb.min.y - ray.position.y) * dirfrac.y
local t4 = (aabb.max.y - ray.position.y) * dirfrac.y
local t5 = (aabb.min.z - ray.position.z) * dirfrac.z
local t6 = (aabb.max.z - ray.position.z) * dirfrac.z
local tmin = max(max(min(t1, t2), min(t3, t4)), min(t5, t6))
local tmax = min(min(max(t1, t2), max(t3, t4)), max(t5, t6))
-- ray is intersecting AABB, but whole AABB is behind us
if tmax < 0 then
return false
end
-- ray does not intersect AABB
if tmin > tmax then
return false
end
-- Return collision point and distance from ray origin
return ray.position + ray.direction * tmin, tmin
end
-- http://stackoverflow.com/a/23976134/1190664
-- ray.position is a vec3
-- ray.direction is a vec3
-- plane.position is a vec3
-- plane.normal is a vec3
function intersect.ray_plane(ray, plane)
local denom = plane.normal:dot(ray.direction)
-- ray does not intersect plane
if abs(denom) < DBL_EPSILON then
return false
end
-- distance of direction
local d = plane.position - ray.position
local t = d:dot(plane.normal) / denom
if t < DBL_EPSILON then
return false
end
-- Return collision point and distance from ray origin
return ray.position + ray.direction * t, t
end
function intersect.ray_capsule(ray, capsule)
local dist2, p1, p2 = intersect.closest_point_segment_segment(
ray.position,
ray.position + ray.direction * 1e10,
capsule.a,
capsule.b
)
if dist2 <= capsule.radius^2 then
return p1
end
return false
end
-- https://web.archive.org/web/20120414063459/http://local.wasp.uwa.edu.au/~pbourke//geometry/lineline3d/
-- a[1] is a vec3
-- a[2] is a vec3
-- b[1] is a vec3
-- b[2] is a vec3
-- e is a number
function intersect.line_line(a, b, e)
-- new points
local p13 = a[1] - b[1]
local p43 = b[2] - b[1]
local p21 = a[2] - a[1]
-- if lengths are negative or too close to 0, lines do not intersect
if p43:len2() < DBL_EPSILON or p21:len2() < DBL_EPSILON then
return false
end
-- dot products
local d1343 = p13:dot(p43)
local d4321 = p43:dot(p21)
local d1321 = p13:dot(p21)
local d4343 = p43:dot(p43)
local d2121 = p21:dot(p21)
local denom = d2121 * d4343 - d4321 * d4321
-- if denom is too close to 0, lines do not intersect
if abs(denom) < DBL_EPSILON then
return false
end
local numer = d1343 * d4321 - d1321 * d4343
local mua = numer / denom
local mub = (d1343 + d4321 * mua) / d4343
-- return positions of intersection on each line
local out1 = a[1] + p21 * mua
local out2 = b[1] + p43 * mub
local dist = out1:dist(out2)
-- if distance of the shortest segment between lines is less than threshold
if e and dist > e then
return false
end
return { out1, out2 }, dist
end
-- a[1] is a vec3
-- a[2] is a vec3
-- b[1] is a vec3
-- b[2] is a vec3
-- e is a number
function intersect.segment_segment(a, b, e)
local c, d = intersect.line_line(a, b, e)
if c and ((
a[1].x <= c[1].x and
a[1].y <= c[1].y and
a[1].z <= c[1].z and
c[1].x <= a[2].x and
c[1].y <= a[2].y and
c[1].z <= a[2].z
) or (
a[1].x >= c[1].x and
a[1].y >= c[1].y and
a[1].z >= c[1].z and
c[1].x >= a[2].x and
c[1].y >= a[2].y and
c[1].z >= a[2].z
)) and ((
b[1].x <= c[2].x and
b[1].y <= c[2].y and
b[1].z <= c[2].z and
c[2].x <= b[2].x and
c[2].y <= b[2].y and
c[2].z <= b[2].z
) or (
b[1].x >= c[2].x and
b[1].y >= c[2].y and
b[1].z >= c[2].z and
c[2].x >= b[2].x and
c[2].y >= b[2].y and
c[2].z >= b[2].z
)) then
return c, d
end
-- segments do not intersect
return false
end
-- a.min is a vec3
-- a.max is a vec3
-- b.min is a vec3
-- b.max is a vec3
function intersect.aabb_aabb(a, b)
return
a.min.x <= b.max.x and
a.max.x >= b.min.x and
a.min.y <= b.max.y and
a.max.y >= b.min.y and
a.min.z <= b.max.z and
a.max.z >= b.min.z
end
-- aabb.position is a vec3
-- aabb.extent is a vec3 (half-size)
-- obb.position is a vec3
-- obb.extent is a vec3 (half-size)
-- obb.rotation is a mat4
function intersect.aabb_obb(aabb, obb)
local a = aabb.extent
local b = obb.extent
local T = obb.position - aabb.position
local rot = mat4():transpose(obb.rotation)
local B = {}
local t
for i = 1, 3 do
B[i] = {}
for j = 1, 3 do
assert((i - 1) * 4 + j < 16 and (i - 1) * 4 + j > 0)
B[i][j] = abs(rot[(i - 1) * 4 + j]) + 1e-6
end
end
t = abs(T.x)
if not (t <= (b.x + a.x * B[1][1] + b.y * B[1][2] + b.z * B[1][3])) then return false end
t = abs(T.x * B[1][1] + T.y * B[2][1] + T.z * B[3][1])
if not (t <= (b.x + a.x * B[1][1] + a.y * B[2][1] + a.z * B[3][1])) then return false end
t = abs(T.y)
if not (t <= (a.y + b.x * B[2][1] + b.y * B[2][2] + b.z * B[2][3])) then return false end
t = abs(T.z)
if not (t <= (a.z + b.x * B[3][1] + b.y * B[3][2] + b.z * B[3][3])) then return false end
t = abs(T.x * B[1][2] + T.y * B[2][2] + T.z * B[3][2])
if not (t <= (b.y + a.x * B[1][2] + a.y * B[2][2] + a.z * B[3][2])) then return false end
t = abs(T.x * B[1][3] + T.y * B[2][3] + T.z * B[3][3])
if not (t <= (b.z + a.x * B[1][3] + a.y * B[2][3] + a.z * B[3][3])) then return false end
t = abs(T.z * B[2][1] - T.y * B[3][1])
if not (t <= (a.y * B[3][1] + a.z * B[2][1] + b.y * B[1][3] + b.z * B[1][2])) then return false end
t = abs(T.z * B[2][2] - T.y * B[3][2])
if not (t <= (a.y * B[3][2] + a.z * B[2][2] + b.x * B[1][3] + b.z * B[1][1])) then return false end
t = abs(T.z * B[2][3] - T.y * B[3][3])
if not (t <= (a.y * B[3][3] + a.z * B[2][3] + b.x * B[1][2] + b.y * B[1][1])) then return false end
t = abs(T.x * B[3][1] - T.z * B[1][1])
if not (t <= (a.x * B[3][1] + a.z * B[1][1] + b.y * B[2][3] + b.z * B[2][2])) then return false end
t = abs(T.x * B[3][2] - T.z * B[1][2])
if not (t <= (a.x * B[3][2] + a.z * B[1][2] + b.x * B[2][3] + b.z * B[2][1])) then return false end
t = abs(T.x * B[3][3] - T.z * B[1][3])
if not (t <= (a.x * B[3][3] + a.z * B[1][3] + b.x * B[2][2] + b.y * B[2][1])) then return false end
t = abs(T.y * B[1][1] - T.x * B[2][1])
if not (t <= (a.x * B[2][1] + a.y * B[1][1] + b.y * B[3][3] + b.z * B[3][2])) then return false end
t = abs(T.y * B[1][2] - T.x * B[2][2])
if not (t <= (a.x * B[2][2] + a.y * B[1][2] + b.x * B[3][3] + b.z * B[3][1])) then return false end
t = abs(T.y * B[1][3] - T.x * B[2][3])
if not (t <= (a.x * B[2][3] + a.y * B[1][3] + b.x * B[3][2] + b.y * B[3][1])) then return false end
-- https://gamedev.stackexchange.com/questions/24078/which-side-was-hit
-- Minkowski Sum
local wy = (aabb.extent * 2 + obb.extent * 2) * (aabb.position.y - obb.position.y)
local hx = (aabb.extent * 2 + obb.extent * 2) * (aabb.position.x - obb.position.x)
if wy.x > hx.x and wy.y > hx.y and wy.z > hx.z then
if wy.x > -hx.x and wy.y > -hx.y and wy.z > -hx.z then
return vec3(obb.rotation * { 0, -1, 0, 1 })
else
return vec3(obb.rotation * { -1, 0, 0, 1 })
end
else
if wy.x > -hx.x and wy.y > -hx.y and wy.z > -hx.z then
return vec3(obb.rotation * { 1, 0, 0, 1 })
else
return vec3(obb.rotation * { 0, 1, 0, 1 })
end
end
end
-- http://stackoverflow.com/a/4579069/1190664
-- aabb.min is a vec3
-- aabb.max is a vec3
-- sphere.position is a vec3
-- sphere.radius is a number
local axes = { "x", "y", "z" }
function intersect.aabb_sphere(aabb, sphere)
local dist2 = sphere.radius ^ 2
for _, axis in ipairs(axes) do
local pos = sphere.position[axis]
local amin = aabb.min[axis]
local amax = aabb.max[axis]
if pos < amin then
dist2 = dist2 - (pos - amin) ^ 2
elseif pos > amax then
dist2 = dist2 - (pos - amax) ^ 2
end
end
return dist2 > 0
end
-- aabb.min is a vec3
-- aabb.max is a vec3
-- frustum.left is a plane { a, b, c, d }
-- frustum.right is a plane { a, b, c, d }
-- frustum.bottom is a plane { a, b, c, d }
-- frustum.top is a plane { a, b, c, d }
-- frustum.near is a plane { a, b, c, d }
-- frustum.far is a plane { a, b, c, d }
function intersect.aabb_frustum(aabb, frustum)
-- Indexed for the 'index trick' later
local box = {
aabb.min,
aabb.max
}
-- We have 6 planes defining the frustum, 5 if infinite.
local planes = {
frustum.left,
frustum.right,
frustum.bottom,
frustum.top,
frustum.near,
frustum.far or false
}
-- Skip the last test for infinite projections, it'll never fail.
if not planes[6] then
table.remove(planes)
end
for i = 1, #planes do
-- This is the current plane
local p = planes[i]
-- p-vertex selection (with the index trick)
-- According to the plane normal we can know the
-- indices of the positive vertex
local px = p.a > 0.0 and 2 or 1
local py = p.b > 0.0 and 2 or 1
local pz = p.c > 0.0 and 2 or 1
-- project p-vertex on plane normal
-- (How far is p-vertex from the origin)
local dot = (p.a * box[px].x) + (p.b * box[py].y) + (p.c * box[pz].z)
-- Doesn't intersect if it is behind the plane
if dot < -p.d then
return false
end
end
return true
end
-- outer.min is a vec3
-- outer.max is a vec3
-- inner.min is a vec3
-- inner.max is a vec3
function intersect.encapsulate_aabb(outer, inner)
return
outer.min.x <= inner.min.x and
outer.max.x >= inner.max.x and
outer.min.y <= inner.min.y and
outer.max.y >= inner.max.y and
outer.min.z <= inner.min.z and
outer.max.z >= inner.max.z
end
-- a.position is a vec3
-- a.radius is a number
-- b.position is a vec3
-- b.radius is a number
function intersect.circle_circle(a, b)
return a.position:dist(b.position) <= a.radius + b.radius
end
-- a.position is a vec3
-- a.radius is a number
-- b.position is a vec3
-- b.radius is a number
function intersect.sphere_sphere(a, b)
return intersect.circle_circle(a, b)
end
-- http://realtimecollisiondetection.net/blog/?p=103
-- sphere.position is a vec3
-- sphere.radius is a number
-- triangle[1] is a vec3
-- triangle[2] is a vec3
-- triangle[3] is a vec3
function intersect.sphere_triangle(sphere, triangle)
-- Sphere is centered at origin
local A = triangle[1] - sphere.position
local B = triangle[2] - sphere.position
local C = triangle[3] - sphere.position
-- Compute normal of triangle plane
local V = (B - A):cross(C - A)
-- Test if sphere lies outside triangle plane
local rr = sphere.radius * sphere.radius
local d = A:dot(V)
local e = V:dot(V)
local s1 = d * d > rr * e
-- Test if sphere lies outside triangle vertices
local aa = A:dot(A)
local ab = A:dot(B)
local ac = A:dot(C)
local bb = B:dot(B)
local bc = B:dot(C)
local cc = C:dot(C)
local s2 = (aa > rr) and (ab > aa) and (ac > aa)
local s3 = (bb > rr) and (ab > bb) and (bc > bb)
local s4 = (cc > rr) and (ac > cc) and (bc > cc)
-- Test is sphere lies outside triangle edges
local AB = B - A
local BC = C - B
local CA = A - C
local d1 = ab - aa
local d2 = bc - bb
local d3 = ac - cc
local e1 = AB:dot(AB)
local e2 = BC:dot(BC)
local e3 = CA:dot(CA)
local Q1 = A * e1 - AB * d1
local Q2 = B * e2 - BC * d2
local Q3 = C * e3 - CA * d3
local QC = C * e1 - Q1
local QA = A * e2 - Q2
local QB = B * e3 - Q3
local s5 = (Q1:dot(Q1) > rr * e1 * e1) and (Q1:dot(QC) > 0)
local s6 = (Q2:dot(Q2) > rr * e2 * e2) and (Q2:dot(QA) > 0)
local s7 = (Q3:dot(Q3) > rr * e3 * e3) and (Q3:dot(QB) > 0)
-- Return whether or not any of the tests passed
return s1 or s2 or s3 or s4 or s5 or s6 or s7
end
-- sphere.position is a vec3
-- sphere.radius is a number
-- frustum.left is a plane { a, b, c, d }
-- frustum.right is a plane { a, b, c, d }
-- frustum.bottom is a plane { a, b, c, d }
-- frustum.top is a plane { a, b, c, d }
-- frustum.near is a plane { a, b, c, d }
-- frustum.far is a plane { a, b, c, d }
function intersect.sphere_frustum(sphere, frustum)
local x, y, z = sphere.position:unpack()
local planes = {
frustum.left,
frustum.right,
frustum.bottom,
frustum.top,
frustum.near
}
if frustum.far then
table.insert(planes, frustum.far, 5)
end
local dot
for i = 1, #planes do
dot = planes[i].a * x + planes[i].b * y + planes[i].c * z + planes[i].d
if dot <= -sphere.radius then
return false
end
end
-- dot + radius is the distance of the object from the near plane.
-- make sure that the near plane is the last test!
return dot + sphere.radius
end
function intersect.capsule_capsule(c1, c2)
local dist2, p1, p2 = intersect.closest_point_segment_segment(c1.a, c1.b, c2.a, c2.b)
local radius = c1.radius + c2.radius
if dist2 <= radius * radius then
return p1, p2
end
return false
end
function intersect.closest_point_segment_segment(p1, p2, p3, p4)
local s -- Distance of intersection along segment 1
local t -- Distance of intersection along segment 2
local c1 -- Collision point on segment 1
local c2 -- Collision point on segment 2
local d1 = p2 - p1 -- Direction of segment 1
local d2 = p4 - p3 -- Direction of segment 2
local r = p1 - p3
local a = d1:dot(d1)
local e = d2:dot(d2)
local f = d2:dot(r)
-- Check if both segments degenerate into points
if a <= DBL_EPSILON and e <= DBL_EPSILON then
s = 0
t = 0
c1 = p1
c2 = p3
return (c1 - c2):dot(c1 - c2), s, t, c1, c2
end
-- Check if segment 1 degenerates into a point
if a <= DBL_EPSILON then
s = 0
t = utils.clamp(f / e, 0, 1)
else
local c = d1:dot(r)
-- Check is segment 2 degenerates into a point
if e <= DBL_EPSILON then
t = 0
s = utils.clamp(-c / a, 0, 1)
else
local b = d1:dot(d2)
local denom = a * e - b * b
if abs(denom) > 0 then
s = utils.clamp((b * f - c * e) / denom, 0, 1)
else
s = 0
end
t = (b * s + f) / e
if t < 0 then
t = 0
s = utils.clamp(-c / a, 0, 1)
elseif t > 1 then
t = 1
s = utils.clamp((b - c) / a, 0, 1)
end
end
end
c1 = p1 + d1 * s
c2 = p3 + d2 * t
return (c1 - c2):dot(c1 - c2), c1, c2, s, t
end
return intersect