mirror of
https://github.com/SashLilac/cambridge.git
synced 2024-11-22 19:49:03 -06:00
944 lines
26 KiB
Lua
944 lines
26 KiB
Lua
|
--- double 4x4, 1-based, column major matrices
|
||
|
-- @module mat4
|
||
|
local modules = (...):gsub('%.[^%.]+$', '') .. "."
|
||
|
local constants = require(modules .. "constants")
|
||
|
local vec2 = require(modules .. "vec2")
|
||
|
local vec3 = require(modules .. "vec3")
|
||
|
local quat = require(modules .. "quat")
|
||
|
local utils = require(modules .. "utils")
|
||
|
local precond = require(modules .. "_private_precond")
|
||
|
local private = require(modules .. "_private_utils")
|
||
|
local sqrt = math.sqrt
|
||
|
local cos = math.cos
|
||
|
local sin = math.sin
|
||
|
local tan = math.tan
|
||
|
local rad = math.rad
|
||
|
local mat4 = {}
|
||
|
local mat4_mt = {}
|
||
|
|
||
|
-- Private constructor.
|
||
|
local function new(m)
|
||
|
m = m or {
|
||
|
0, 0, 0, 0,
|
||
|
0, 0, 0, 0,
|
||
|
0, 0, 0, 0,
|
||
|
0, 0, 0, 0
|
||
|
}
|
||
|
m._m = m
|
||
|
return setmetatable(m, mat4_mt)
|
||
|
end
|
||
|
|
||
|
-- Convert matrix into identity
|
||
|
local function identity(m)
|
||
|
m[1], m[2], m[3], m[4] = 1, 0, 0, 0
|
||
|
m[5], m[6], m[7], m[8] = 0, 1, 0, 0
|
||
|
m[9], m[10], m[11], m[12] = 0, 0, 1, 0
|
||
|
m[13], m[14], m[15], m[16] = 0, 0, 0, 1
|
||
|
return m
|
||
|
end
|
||
|
|
||
|
-- Do the check to see if JIT is enabled. If so use the optimized FFI structs.
|
||
|
local status, ffi
|
||
|
if type(jit) == "table" and jit.status() then
|
||
|
-- status, ffi = pcall(require, "ffi")
|
||
|
if status then
|
||
|
ffi.cdef "typedef struct { double _m[16]; } cpml_mat4;"
|
||
|
new = ffi.typeof("cpml_mat4")
|
||
|
end
|
||
|
end
|
||
|
|
||
|
-- Statically allocate a temporary variable used in some of our functions.
|
||
|
local tmp = new()
|
||
|
local tm4 = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }
|
||
|
local tv4 = { 0, 0, 0, 0 }
|
||
|
|
||
|
--- The public constructor.
|
||
|
-- @param a Can be of four types: </br>
|
||
|
-- table Length 16 (4x4 matrix)
|
||
|
-- table Length 9 (3x3 matrix)
|
||
|
-- table Length 4 (4 vec4s)
|
||
|
-- nil
|
||
|
-- @treturn mat4 out
|
||
|
function mat4.new(a)
|
||
|
local out = new()
|
||
|
|
||
|
-- 4x4 matrix
|
||
|
if type(a) == "table" and #a == 16 then
|
||
|
for i = 1, 16 do
|
||
|
out[i] = tonumber(a[i])
|
||
|
end
|
||
|
|
||
|
-- 3x3 matrix
|
||
|
elseif type(a) == "table" and #a == 9 then
|
||
|
out[1], out[2], out[3] = a[1], a[2], a[3]
|
||
|
out[5], out[6], out[7] = a[4], a[5], a[6]
|
||
|
out[9], out[10], out[11] = a[7], a[8], a[9]
|
||
|
out[16] = 1
|
||
|
|
||
|
-- 4 vec4s
|
||
|
elseif type(a) == "table" and type(a[1]) == "table" then
|
||
|
local idx = 1
|
||
|
for i = 1, 4 do
|
||
|
for j = 1, 4 do
|
||
|
out[idx] = a[i][j]
|
||
|
idx = idx + 1
|
||
|
end
|
||
|
end
|
||
|
|
||
|
-- nil
|
||
|
else
|
||
|
out[1] = 1
|
||
|
out[6] = 1
|
||
|
out[11] = 1
|
||
|
out[16] = 1
|
||
|
end
|
||
|
|
||
|
return out
|
||
|
end
|
||
|
|
||
|
--- Create an identity matrix.
|
||
|
-- @tparam mat4 a Matrix to overwrite
|
||
|
-- @treturn mat4 out
|
||
|
function mat4.identity(a)
|
||
|
return identity(a or new())
|
||
|
end
|
||
|
|
||
|
--- Create a matrix from an angle/axis pair.
|
||
|
-- @tparam number angle Angle of rotation
|
||
|
-- @tparam vec3 axis Axis of rotation
|
||
|
-- @treturn mat4 out
|
||
|
function mat4.from_angle_axis(angle, axis)
|
||
|
local l = axis:len()
|
||
|
if l == 0 then
|
||
|
return new()
|
||
|
end
|
||
|
|
||
|
local x, y, z = axis.x / l, axis.y / l, axis.z / l
|
||
|
local c = cos(angle)
|
||
|
local s = sin(angle)
|
||
|
|
||
|
return new {
|
||
|
x*x*(1-c)+c, y*x*(1-c)+z*s, x*z*(1-c)-y*s, 0,
|
||
|
x*y*(1-c)-z*s, y*y*(1-c)+c, y*z*(1-c)+x*s, 0,
|
||
|
x*z*(1-c)+y*s, y*z*(1-c)-x*s, z*z*(1-c)+c, 0,
|
||
|
0, 0, 0, 1
|
||
|
}
|
||
|
end
|
||
|
|
||
|
--- Create a matrix from a quaternion.
|
||
|
-- @tparam quat q Rotation quaternion
|
||
|
-- @treturn mat4 out
|
||
|
function mat4.from_quaternion(q)
|
||
|
return mat4.from_angle_axis(q:to_angle_axis())
|
||
|
end
|
||
|
|
||
|
--- Create a matrix from a direction/up pair.
|
||
|
-- @tparam vec3 direction Vector direction
|
||
|
-- @tparam vec3 up Up direction
|
||
|
-- @treturn mat4 out
|
||
|
function mat4.from_direction(direction, up)
|
||
|
local forward = vec3.normalize(direction)
|
||
|
local side = vec3.cross(forward, up):normalize()
|
||
|
local new_up = vec3.cross(side, forward):normalize()
|
||
|
|
||
|
local out = new()
|
||
|
out[1] = side.x
|
||
|
out[5] = side.y
|
||
|
out[9] = side.z
|
||
|
out[2] = new_up.x
|
||
|
out[6] = new_up.y
|
||
|
out[10] = new_up.z
|
||
|
out[3] = forward.x
|
||
|
out[7] = forward.y
|
||
|
out[11] = forward.z
|
||
|
out[16] = 1
|
||
|
|
||
|
return out
|
||
|
end
|
||
|
|
||
|
--- Create a matrix from a transform.
|
||
|
-- @tparam vec3 trans Translation vector
|
||
|
-- @tparam quat rot Rotation quaternion
|
||
|
-- @tparam vec3 scale Scale vector
|
||
|
-- @treturn mat4 out
|
||
|
function mat4.from_transform(trans, rot, scale)
|
||
|
local rx, ry, rz, rw = rot.x, rot.y, rot.z, rot.w
|
||
|
|
||
|
local sm = new {
|
||
|
scale.x, 0, 0, 0,
|
||
|
0, scale.y, 0, 0,
|
||
|
0, 0, scale.z, 0,
|
||
|
0, 0, 0, 1,
|
||
|
}
|
||
|
|
||
|
local rm = new {
|
||
|
1-2*(ry*ry+rz*rz), 2*(rx*ry-rz*rw), 2*(rx*rz+ry*rw), 0,
|
||
|
2*(rx*ry+rz*rw), 1-2*(rx*rx+rz*rz), 2*(ry*rz-rx*rw), 0,
|
||
|
2*(rx*rz-ry*rw), 2*(ry*rz+rx*rw), 1-2*(rx*rx+ry*ry), 0,
|
||
|
0, 0, 0, 1
|
||
|
}
|
||
|
|
||
|
local rsm = rm * sm
|
||
|
|
||
|
rsm[13] = trans.x
|
||
|
rsm[14] = trans.y
|
||
|
rsm[15] = trans.z
|
||
|
|
||
|
return rsm
|
||
|
end
|
||
|
|
||
|
--- Create matrix from orthogonal.
|
||
|
-- @tparam number left
|
||
|
-- @tparam number right
|
||
|
-- @tparam number top
|
||
|
-- @tparam number bottom
|
||
|
-- @tparam number near
|
||
|
-- @tparam number far
|
||
|
-- @treturn mat4 out
|
||
|
function mat4.from_ortho(left, right, top, bottom, near, far)
|
||
|
local out = new()
|
||
|
out[1] = 2 / (right - left)
|
||
|
out[6] = 2 / (top - bottom)
|
||
|
out[11] = -2 / (far - near)
|
||
|
out[13] = -((right + left) / (right - left))
|
||
|
out[14] = -((top + bottom) / (top - bottom))
|
||
|
out[15] = -((far + near) / (far - near))
|
||
|
out[16] = 1
|
||
|
|
||
|
return out
|
||
|
end
|
||
|
|
||
|
--- Create matrix from perspective.
|
||
|
-- @tparam number fovy Field of view
|
||
|
-- @tparam number aspect Aspect ratio
|
||
|
-- @tparam number near Near plane
|
||
|
-- @tparam number far Far plane
|
||
|
-- @treturn mat4 out
|
||
|
function mat4.from_perspective(fovy, aspect, near, far)
|
||
|
assert(aspect ~= 0)
|
||
|
assert(near ~= far)
|
||
|
|
||
|
local t = tan(rad(fovy) / 2)
|
||
|
local out = new()
|
||
|
out[1] = 1 / (t * aspect)
|
||
|
out[6] = 1 / t
|
||
|
out[11] = -(far + near) / (far - near)
|
||
|
out[12] = -1
|
||
|
out[15] = -(2 * far * near) / (far - near)
|
||
|
out[16] = 0
|
||
|
|
||
|
return out
|
||
|
end
|
||
|
|
||
|
-- Adapted from the Oculus SDK.
|
||
|
--- Create matrix from HMD perspective.
|
||
|
-- @tparam number tanHalfFov Tangent of half of the field of view
|
||
|
-- @tparam number zNear Near plane
|
||
|
-- @tparam number zFar Far plane
|
||
|
-- @tparam boolean flipZ Z axis is flipped or not
|
||
|
-- @tparam boolean farAtInfinity Far plane is infinite or not
|
||
|
-- @treturn mat4 out
|
||
|
function mat4.from_hmd_perspective(tanHalfFov, zNear, zFar, flipZ, farAtInfinity)
|
||
|
-- CPML is right-handed and intended for GL, so these don't need to be arguments.
|
||
|
local rightHanded = true
|
||
|
local isOpenGL = true
|
||
|
|
||
|
local function CreateNDCScaleAndOffsetFromFov(tanHalfFov)
|
||
|
local x_scale = 2 / (tanHalfFov.LeftTan + tanHalfFov.RightTan)
|
||
|
local x_offset = (tanHalfFov.LeftTan - tanHalfFov.RightTan) * x_scale * 0.5
|
||
|
local y_scale = 2 / (tanHalfFov.UpTan + tanHalfFov.DownTan )
|
||
|
local y_offset = (tanHalfFov.UpTan - tanHalfFov.DownTan ) * y_scale * 0.5
|
||
|
|
||
|
local result = {
|
||
|
Scale = vec2(x_scale, y_scale),
|
||
|
Offset = vec2(x_offset, y_offset)
|
||
|
}
|
||
|
|
||
|
-- Hey - why is that Y.Offset negated?
|
||
|
-- It's because a projection matrix transforms from world coords with Y=up,
|
||
|
-- whereas this is from NDC which is Y=down.
|
||
|
return result
|
||
|
end
|
||
|
|
||
|
if not flipZ and farAtInfinity then
|
||
|
print("Error: Cannot push Far Clip to Infinity when Z-order is not flipped")
|
||
|
farAtInfinity = false
|
||
|
end
|
||
|
|
||
|
-- A projection matrix is very like a scaling from NDC, so we can start with that.
|
||
|
local scaleAndOffset = CreateNDCScaleAndOffsetFromFov(tanHalfFov)
|
||
|
local handednessScale = rightHanded and -1.0 or 1.0
|
||
|
local projection = new()
|
||
|
|
||
|
-- Produces X result, mapping clip edges to [-w,+w]
|
||
|
projection[1] = scaleAndOffset.Scale.x
|
||
|
projection[2] = 0
|
||
|
projection[3] = handednessScale * scaleAndOffset.Offset.x
|
||
|
projection[4] = 0
|
||
|
|
||
|
-- Produces Y result, mapping clip edges to [-w,+w]
|
||
|
-- Hey - why is that YOffset negated?
|
||
|
-- It's because a projection matrix transforms from world coords with Y=up,
|
||
|
-- whereas this is derived from an NDC scaling, which is Y=down.
|
||
|
projection[5] = 0
|
||
|
projection[6] = scaleAndOffset.Scale.y
|
||
|
projection[7] = handednessScale * -scaleAndOffset.Offset.y
|
||
|
projection[8] = 0
|
||
|
|
||
|
-- Produces Z-buffer result - app needs to fill this in with whatever Z range it wants.
|
||
|
-- We'll just use some defaults for now.
|
||
|
projection[9] = 0
|
||
|
projection[10] = 0
|
||
|
|
||
|
if farAtInfinity then
|
||
|
if isOpenGL then
|
||
|
-- It's not clear this makes sense for OpenGL - you don't get the same precision benefits you do in D3D.
|
||
|
projection[11] = -handednessScale
|
||
|
projection[12] = 2.0 * zNear
|
||
|
else
|
||
|
projection[11] = 0
|
||
|
projection[12] = zNear
|
||
|
end
|
||
|
else
|
||
|
if isOpenGL then
|
||
|
-- Clip range is [-w,+w], so 0 is at the middle of the range.
|
||
|
projection[11] = -handednessScale * (flipZ and -1.0 or 1.0) * (zNear + zFar) / (zNear - zFar)
|
||
|
projection[12] = 2.0 * ((flipZ and -zFar or zFar) * zNear) / (zNear - zFar)
|
||
|
else
|
||
|
-- Clip range is [0,+w], so 0 is at the start of the range.
|
||
|
projection[11] = -handednessScale * (flipZ and -zNear or zFar) / (zNear - zFar)
|
||
|
projection[12] = ((flipZ and -zFar or zFar) * zNear) / (zNear - zFar)
|
||
|
end
|
||
|
end
|
||
|
|
||
|
-- Produces W result (= Z in)
|
||
|
projection[13] = 0
|
||
|
projection[14] = 0
|
||
|
projection[15] = handednessScale
|
||
|
projection[16] = 0
|
||
|
|
||
|
return projection:transpose(projection)
|
||
|
end
|
||
|
|
||
|
--- Clone a matrix.
|
||
|
-- @tparam mat4 a Matrix to clone
|
||
|
-- @treturn mat4 out
|
||
|
function mat4.clone(a)
|
||
|
return new(a)
|
||
|
end
|
||
|
|
||
|
function mul_internal(out, a, b)
|
||
|
tm4[1] = b[1] * a[1] + b[2] * a[5] + b[3] * a[9] + b[4] * a[13]
|
||
|
tm4[2] = b[1] * a[2] + b[2] * a[6] + b[3] * a[10] + b[4] * a[14]
|
||
|
tm4[3] = b[1] * a[3] + b[2] * a[7] + b[3] * a[11] + b[4] * a[15]
|
||
|
tm4[4] = b[1] * a[4] + b[2] * a[8] + b[3] * a[12] + b[4] * a[16]
|
||
|
tm4[5] = b[5] * a[1] + b[6] * a[5] + b[7] * a[9] + b[8] * a[13]
|
||
|
tm4[6] = b[5] * a[2] + b[6] * a[6] + b[7] * a[10] + b[8] * a[14]
|
||
|
tm4[7] = b[5] * a[3] + b[6] * a[7] + b[7] * a[11] + b[8] * a[15]
|
||
|
tm4[8] = b[5] * a[4] + b[6] * a[8] + b[7] * a[12] + b[8] * a[16]
|
||
|
tm4[9] = b[9] * a[1] + b[10] * a[5] + b[11] * a[9] + b[12] * a[13]
|
||
|
tm4[10] = b[9] * a[2] + b[10] * a[6] + b[11] * a[10] + b[12] * a[14]
|
||
|
tm4[11] = b[9] * a[3] + b[10] * a[7] + b[11] * a[11] + b[12] * a[15]
|
||
|
tm4[12] = b[9] * a[4] + b[10] * a[8] + b[11] * a[12] + b[12] * a[16]
|
||
|
tm4[13] = b[13] * a[1] + b[14] * a[5] + b[15] * a[9] + b[16] * a[13]
|
||
|
tm4[14] = b[13] * a[2] + b[14] * a[6] + b[15] * a[10] + b[16] * a[14]
|
||
|
tm4[15] = b[13] * a[3] + b[14] * a[7] + b[15] * a[11] + b[16] * a[15]
|
||
|
tm4[16] = b[13] * a[4] + b[14] * a[8] + b[15] * a[12] + b[16] * a[16]
|
||
|
|
||
|
for i = 1, 16 do
|
||
|
out[i] = tm4[i]
|
||
|
end
|
||
|
end
|
||
|
|
||
|
--- Multiply N matrices.
|
||
|
-- @tparam mat4 out Matrix to store the result
|
||
|
-- @tparam mat4 or {mat4, ...} left hand operand(s)
|
||
|
-- @tparam mat4 right hand operand if a is not table
|
||
|
-- @treturn mat4 out multiplied matrix result
|
||
|
function mat4.mul(out, a, b)
|
||
|
if mat4.is_mat4(a) then
|
||
|
mul_internal(out, a, b)
|
||
|
return out
|
||
|
end
|
||
|
if #a == 0 then
|
||
|
identity(out)
|
||
|
elseif #a == 1 then
|
||
|
-- only one matrix, just copy
|
||
|
for i = 1, 16 do
|
||
|
out[i] = a[1][i]
|
||
|
end
|
||
|
else
|
||
|
local ma = a[1]
|
||
|
local mb = a[2]
|
||
|
for i = 2, #a do
|
||
|
mul_internal(out, ma, mb)
|
||
|
ma = out
|
||
|
end
|
||
|
end
|
||
|
return out
|
||
|
end
|
||
|
|
||
|
--- Multiply a matrix and a vec3, with perspective division.
|
||
|
-- This function uses an implicit 1 for the fourth component.
|
||
|
-- @tparam vec3 out vec3 to store the result
|
||
|
-- @tparam mat4 a Left hand operand
|
||
|
-- @tparam vec3 b Right hand operand
|
||
|
-- @treturn vec3 out
|
||
|
function mat4.mul_vec3_perspective(out, a, b)
|
||
|
local v4x = b.x * a[1] + b.y * a[5] + b.z * a[9] + a[13]
|
||
|
local v4y = b.x * a[2] + b.y * a[6] + b.z * a[10] + a[14]
|
||
|
local v4z = b.x * a[3] + b.y * a[7] + b.z * a[11] + a[15]
|
||
|
local v4w = b.x * a[4] + b.y * a[8] + b.z * a[12] + a[16]
|
||
|
local inv_w = 0
|
||
|
if v4w ~= 0 then
|
||
|
inv_w = utils.sign(v4w) / v4w
|
||
|
end
|
||
|
out.x = v4x * inv_w
|
||
|
out.y = v4y * inv_w
|
||
|
out.z = v4z * inv_w
|
||
|
return out
|
||
|
end
|
||
|
|
||
|
--- Multiply a matrix and a vec4.
|
||
|
-- @tparam table out table to store the result
|
||
|
-- @tparam mat4 a Left hand operand
|
||
|
-- @tparam table b Right hand operand
|
||
|
-- @treturn vec4 out
|
||
|
function mat4.mul_vec4(out, a, b)
|
||
|
tv4[1] = b[1] * a[1] + b[2] * a[5] + b [3] * a[9] + b[4] * a[13]
|
||
|
tv4[2] = b[1] * a[2] + b[2] * a[6] + b [3] * a[10] + b[4] * a[14]
|
||
|
tv4[3] = b[1] * a[3] + b[2] * a[7] + b [3] * a[11] + b[4] * a[15]
|
||
|
tv4[4] = b[1] * a[4] + b[2] * a[8] + b [3] * a[12] + b[4] * a[16]
|
||
|
|
||
|
for i = 1, 4 do
|
||
|
out[i] = tv4[i]
|
||
|
end
|
||
|
|
||
|
return out
|
||
|
end
|
||
|
|
||
|
--- Invert a matrix.
|
||
|
-- @tparam mat4 out Matrix to store the result
|
||
|
-- @tparam mat4 a Matrix to invert
|
||
|
-- @treturn mat4 out
|
||
|
function mat4.invert(out, a)
|
||
|
tm4[1] = a[6] * a[11] * a[16] - a[6] * a[12] * a[15] - a[10] * a[7] * a[16] + a[10] * a[8] * a[15] + a[14] * a[7] * a[12] - a[14] * a[8] * a[11]
|
||
|
tm4[2] = -a[2] * a[11] * a[16] + a[2] * a[12] * a[15] + a[10] * a[3] * a[16] - a[10] * a[4] * a[15] - a[14] * a[3] * a[12] + a[14] * a[4] * a[11]
|
||
|
tm4[3] = a[2] * a[7] * a[16] - a[2] * a[8] * a[15] - a[6] * a[3] * a[16] + a[6] * a[4] * a[15] + a[14] * a[3] * a[8] - a[14] * a[4] * a[7]
|
||
|
tm4[4] = -a[2] * a[7] * a[12] + a[2] * a[8] * a[11] + a[6] * a[3] * a[12] - a[6] * a[4] * a[11] - a[10] * a[3] * a[8] + a[10] * a[4] * a[7]
|
||
|
tm4[5] = -a[5] * a[11] * a[16] + a[5] * a[12] * a[15] + a[9] * a[7] * a[16] - a[9] * a[8] * a[15] - a[13] * a[7] * a[12] + a[13] * a[8] * a[11]
|
||
|
tm4[6] = a[1] * a[11] * a[16] - a[1] * a[12] * a[15] - a[9] * a[3] * a[16] + a[9] * a[4] * a[15] + a[13] * a[3] * a[12] - a[13] * a[4] * a[11]
|
||
|
tm4[7] = -a[1] * a[7] * a[16] + a[1] * a[8] * a[15] + a[5] * a[3] * a[16] - a[5] * a[4] * a[15] - a[13] * a[3] * a[8] + a[13] * a[4] * a[7]
|
||
|
tm4[8] = a[1] * a[7] * a[12] - a[1] * a[8] * a[11] - a[5] * a[3] * a[12] + a[5] * a[4] * a[11] + a[9] * a[3] * a[8] - a[9] * a[4] * a[7]
|
||
|
tm4[9] = a[5] * a[10] * a[16] - a[5] * a[12] * a[14] - a[9] * a[6] * a[16] + a[9] * a[8] * a[14] + a[13] * a[6] * a[12] - a[13] * a[8] * a[10]
|
||
|
tm4[10] = -a[1] * a[10] * a[16] + a[1] * a[12] * a[14] + a[9] * a[2] * a[16] - a[9] * a[4] * a[14] - a[13] * a[2] * a[12] + a[13] * a[4] * a[10]
|
||
|
tm4[11] = a[1] * a[6] * a[16] - a[1] * a[8] * a[14] - a[5] * a[2] * a[16] + a[5] * a[4] * a[14] + a[13] * a[2] * a[8] - a[13] * a[4] * a[6]
|
||
|
tm4[12] = -a[1] * a[6] * a[12] + a[1] * a[8] * a[10] + a[5] * a[2] * a[12] - a[5] * a[4] * a[10] - a[9] * a[2] * a[8] + a[9] * a[4] * a[6]
|
||
|
tm4[13] = -a[5] * a[10] * a[15] + a[5] * a[11] * a[14] + a[9] * a[6] * a[15] - a[9] * a[7] * a[14] - a[13] * a[6] * a[11] + a[13] * a[7] * a[10]
|
||
|
tm4[14] = a[1] * a[10] * a[15] - a[1] * a[11] * a[14] - a[9] * a[2] * a[15] + a[9] * a[3] * a[14] + a[13] * a[2] * a[11] - a[13] * a[3] * a[10]
|
||
|
tm4[15] = -a[1] * a[6] * a[15] + a[1] * a[7] * a[14] + a[5] * a[2] * a[15] - a[5] * a[3] * a[14] - a[13] * a[2] * a[7] + a[13] * a[3] * a[6]
|
||
|
tm4[16] = a[1] * a[6] * a[11] - a[1] * a[7] * a[10] - a[5] * a[2] * a[11] + a[5] * a[3] * a[10] + a[9] * a[2] * a[7] - a[9] * a[3] * a[6]
|
||
|
|
||
|
local det = a[1] * tm4[1] + a[2] * tm4[5] + a[3] * tm4[9] + a[4] * tm4[13]
|
||
|
|
||
|
if det == 0 then return a end
|
||
|
|
||
|
det = 1 / det
|
||
|
|
||
|
for i = 1, 16 do
|
||
|
out[i] = tm4[i] * det
|
||
|
end
|
||
|
|
||
|
return out
|
||
|
end
|
||
|
|
||
|
--- Scale a matrix.
|
||
|
-- @tparam mat4 out Matrix to store the result
|
||
|
-- @tparam mat4 a Matrix to scale
|
||
|
-- @tparam vec3 s Scalar
|
||
|
-- @treturn mat4 out
|
||
|
function mat4.scale(out, a, s)
|
||
|
identity(tmp)
|
||
|
tmp[1] = s.x
|
||
|
tmp[6] = s.y
|
||
|
tmp[11] = s.z
|
||
|
|
||
|
return out:mul(tmp, a)
|
||
|
end
|
||
|
|
||
|
--- Rotate a matrix.
|
||
|
-- @tparam mat4 out Matrix to store the result
|
||
|
-- @tparam mat4 a Matrix to rotate
|
||
|
-- @tparam number angle Angle to rotate by (in radians)
|
||
|
-- @tparam vec3 axis Axis to rotate on
|
||
|
-- @treturn mat4 out
|
||
|
function mat4.rotate(out, a, angle, axis)
|
||
|
if type(angle) == "table" or type(angle) == "cdata" then
|
||
|
angle, axis = angle:to_angle_axis()
|
||
|
end
|
||
|
|
||
|
local l = axis:len()
|
||
|
|
||
|
if l == 0 then
|
||
|
return a
|
||
|
end
|
||
|
|
||
|
local x, y, z = axis.x / l, axis.y / l, axis.z / l
|
||
|
local c = cos(angle)
|
||
|
local s = sin(angle)
|
||
|
|
||
|
identity(tmp)
|
||
|
tmp[1] = x * x * (1 - c) + c
|
||
|
tmp[2] = y * x * (1 - c) + z * s
|
||
|
tmp[3] = x * z * (1 - c) - y * s
|
||
|
tmp[5] = x * y * (1 - c) - z * s
|
||
|
tmp[6] = y * y * (1 - c) + c
|
||
|
tmp[7] = y * z * (1 - c) + x * s
|
||
|
tmp[9] = x * z * (1 - c) + y * s
|
||
|
tmp[10] = y * z * (1 - c) - x * s
|
||
|
tmp[11] = z * z * (1 - c) + c
|
||
|
|
||
|
return out:mul(tmp, a)
|
||
|
end
|
||
|
|
||
|
--- Translate a matrix.
|
||
|
-- @tparam mat4 out Matrix to store the result
|
||
|
-- @tparam mat4 a Matrix to translate
|
||
|
-- @tparam vec3 t Translation vector
|
||
|
-- @treturn mat4 out
|
||
|
function mat4.translate(out, a, t)
|
||
|
identity(tmp)
|
||
|
tmp[13] = t.x
|
||
|
tmp[14] = t.y
|
||
|
tmp[15] = t.z
|
||
|
|
||
|
return out:mul(tmp, a)
|
||
|
end
|
||
|
|
||
|
--- Shear a matrix.
|
||
|
-- @tparam mat4 out Matrix to store the result
|
||
|
-- @tparam mat4 a Matrix to translate
|
||
|
-- @tparam number yx
|
||
|
-- @tparam number zx
|
||
|
-- @tparam number xy
|
||
|
-- @tparam number zy
|
||
|
-- @tparam number xz
|
||
|
-- @tparam number yz
|
||
|
-- @treturn mat4 out
|
||
|
function mat4.shear(out, a, yx, zx, xy, zy, xz, yz)
|
||
|
identity(tmp)
|
||
|
tmp[2] = yx or 0
|
||
|
tmp[3] = zx or 0
|
||
|
tmp[5] = xy or 0
|
||
|
tmp[7] = zy or 0
|
||
|
tmp[9] = xz or 0
|
||
|
tmp[10] = yz or 0
|
||
|
|
||
|
return out:mul(tmp, a)
|
||
|
end
|
||
|
|
||
|
--- Reflect a matrix across a plane.
|
||
|
-- @tparam mat4 Matrix to store the result
|
||
|
-- @tparam a Matrix to reflect
|
||
|
-- @tparam vec3 position A point on the plane
|
||
|
-- @tparam vec3 normal The (normalized!) normal vector of the plane
|
||
|
function mat4.reflect(out, a, position, normal)
|
||
|
local nx, ny, nz = normal:unpack()
|
||
|
local d = -position:dot(normal)
|
||
|
tmp[1] = 1 - 2 * nx ^ 2
|
||
|
tmp[2] = 2 * nx * ny
|
||
|
tmp[3] = -2 * nx * nz
|
||
|
tmp[4] = 0
|
||
|
tmp[5] = -2 * nx * ny
|
||
|
tmp[6] = 1 - 2 * ny ^ 2
|
||
|
tmp[7] = -2 * ny * nz
|
||
|
tmp[8] = 0
|
||
|
tmp[9] = -2 * nx * nz
|
||
|
tmp[10] = -2 * ny * nz
|
||
|
tmp[11] = 1 - 2 * nz ^ 2
|
||
|
tmp[12] = 0
|
||
|
tmp[13] = -2 * nx * d
|
||
|
tmp[14] = -2 * ny * d
|
||
|
tmp[15] = -2 * nz * d
|
||
|
tmp[16] = 1
|
||
|
|
||
|
return out:mul(tmp, a)
|
||
|
end
|
||
|
|
||
|
--- Transform matrix to look at a point.
|
||
|
-- @tparam mat4 out Matrix to store result
|
||
|
-- @tparam vec3 eye Location of viewer's view plane
|
||
|
-- @tparam vec3 center Location of object to view
|
||
|
-- @tparam vec3 up Up direction
|
||
|
-- @treturn mat4 out
|
||
|
function mat4.look_at(out, eye, look_at, up)
|
||
|
local z_axis = (eye - look_at):normalize()
|
||
|
local x_axis = up:cross(z_axis):normalize()
|
||
|
local y_axis = z_axis:cross(x_axis)
|
||
|
out[1] = x_axis.x
|
||
|
out[2] = y_axis.x
|
||
|
out[3] = z_axis.x
|
||
|
out[4] = 0
|
||
|
out[5] = x_axis.y
|
||
|
out[6] = y_axis.y
|
||
|
out[7] = z_axis.y
|
||
|
out[8] = 0
|
||
|
out[9] = x_axis.z
|
||
|
out[10] = y_axis.z
|
||
|
out[11] = z_axis.z
|
||
|
out[12] = 0
|
||
|
out[13] = -out[ 1]*eye.x - out[4+1]*eye.y - out[8+1]*eye.z
|
||
|
out[14] = -out[ 2]*eye.x - out[4+2]*eye.y - out[8+2]*eye.z
|
||
|
out[15] = -out[ 3]*eye.x - out[4+3]*eye.y - out[8+3]*eye.z
|
||
|
out[16] = -out[ 4]*eye.x - out[4+4]*eye.y - out[8+4]*eye.z + 1
|
||
|
return out
|
||
|
end
|
||
|
|
||
|
--- Transform matrix to target a point.
|
||
|
-- @tparam mat4 out Matrix to store result
|
||
|
-- @tparam vec3 eye Location of viewer's view plane
|
||
|
-- @tparam vec3 center Location of object to view
|
||
|
-- @tparam vec3 up Up direction
|
||
|
-- @treturn mat4 out
|
||
|
function mat4.target(out, from, to, up)
|
||
|
local z_axis = (from - to):normalize()
|
||
|
local x_axis = up:cross(z_axis):normalize()
|
||
|
local y_axis = z_axis:cross(x_axis)
|
||
|
out[1] = x_axis.x
|
||
|
out[2] = x_axis.y
|
||
|
out[3] = x_axis.z
|
||
|
out[4] = 0
|
||
|
out[5] = y_axis.x
|
||
|
out[6] = y_axis.y
|
||
|
out[7] = y_axis.z
|
||
|
out[8] = 0
|
||
|
out[9] = z_axis.x
|
||
|
out[10] = z_axis.y
|
||
|
out[11] = z_axis.z
|
||
|
out[12] = 0
|
||
|
out[13] = from.x
|
||
|
out[14] = from.y
|
||
|
out[15] = from.z
|
||
|
out[16] = 1
|
||
|
return out
|
||
|
end
|
||
|
|
||
|
--- Transpose a matrix.
|
||
|
-- @tparam mat4 out Matrix to store the result
|
||
|
-- @tparam mat4 a Matrix to transpose
|
||
|
-- @treturn mat4 out
|
||
|
function mat4.transpose(out, a)
|
||
|
tm4[1] = a[1]
|
||
|
tm4[2] = a[5]
|
||
|
tm4[3] = a[9]
|
||
|
tm4[4] = a[13]
|
||
|
tm4[5] = a[2]
|
||
|
tm4[6] = a[6]
|
||
|
tm4[7] = a[10]
|
||
|
tm4[8] = a[14]
|
||
|
tm4[9] = a[3]
|
||
|
tm4[10] = a[7]
|
||
|
tm4[11] = a[11]
|
||
|
tm4[12] = a[15]
|
||
|
tm4[13] = a[4]
|
||
|
tm4[14] = a[8]
|
||
|
tm4[15] = a[12]
|
||
|
tm4[16] = a[16]
|
||
|
|
||
|
for i = 1, 16 do
|
||
|
out[i] = tm4[i]
|
||
|
end
|
||
|
|
||
|
return out
|
||
|
end
|
||
|
|
||
|
--- Project a point into screen space
|
||
|
-- @tparam vec3 obj Object position in world space
|
||
|
-- @tparam mat4 mvp Projection matrix
|
||
|
-- @tparam table viewport XYWH of viewport
|
||
|
-- @treturn vec3 win
|
||
|
function mat4.project(obj, mvp, viewport)
|
||
|
local point = mat4.mul_vec3_perspective(vec3(), mvp, obj)
|
||
|
point.x = point.x * 0.5 + 0.5
|
||
|
point.y = point.y * 0.5 + 0.5
|
||
|
point.z = point.z * 0.5 + 0.5
|
||
|
point.x = point.x * viewport[3] + viewport[1]
|
||
|
point.y = point.y * viewport[4] + viewport[2]
|
||
|
return point
|
||
|
end
|
||
|
|
||
|
--- Unproject a point from screen space to world space.
|
||
|
-- @tparam vec3 win Object position in screen space
|
||
|
-- @tparam mat4 mvp Projection matrix
|
||
|
-- @tparam table viewport XYWH of viewport
|
||
|
-- @treturn vec3 obj
|
||
|
function mat4.unproject(win, mvp, viewport)
|
||
|
local point = vec3.clone(win)
|
||
|
|
||
|
-- 0..n -> 0..1
|
||
|
point.x = (point.x - viewport[1]) / viewport[3]
|
||
|
point.y = (point.y - viewport[2]) / viewport[4]
|
||
|
|
||
|
-- 0..1 -> -1..1
|
||
|
point.x = point.x * 2 - 1
|
||
|
point.y = point.y * 2 - 1
|
||
|
point.z = point.z * 2 - 1
|
||
|
|
||
|
return mat4.mul_vec3_perspective(point, tmp:invert(mvp), point)
|
||
|
end
|
||
|
|
||
|
--- Return a boolean showing if a table is or is not a mat4.
|
||
|
-- @tparam mat4 a Matrix to be tested
|
||
|
-- @treturn boolean is_mat4
|
||
|
function mat4.is_mat4(a)
|
||
|
if type(a) == "cdata" then
|
||
|
return ffi.istype("cpml_mat4", a)
|
||
|
end
|
||
|
|
||
|
if type(a) ~= "table" then
|
||
|
return false
|
||
|
end
|
||
|
|
||
|
for i = 1, 16 do
|
||
|
if type(a[i]) ~= "number" then
|
||
|
return false
|
||
|
end
|
||
|
end
|
||
|
|
||
|
return true
|
||
|
end
|
||
|
|
||
|
--- Return whether any component is NaN
|
||
|
-- @tparam mat4 a Matrix to be tested
|
||
|
-- @treturn boolean if any component is NaN
|
||
|
function vec2.has_nan(a)
|
||
|
for i = 1, 16 do
|
||
|
if private.is_nan(a[i]) then
|
||
|
return true
|
||
|
end
|
||
|
end
|
||
|
return false
|
||
|
end
|
||
|
|
||
|
--- Return a formatted string.
|
||
|
-- @tparam mat4 a Matrix to be turned into a string
|
||
|
-- @treturn string formatted
|
||
|
function mat4.to_string(a)
|
||
|
local str = "[ "
|
||
|
for i = 1, 16 do
|
||
|
str = str .. string.format("%+0.3f", a[i])
|
||
|
if i < 16 then
|
||
|
str = str .. ", "
|
||
|
end
|
||
|
end
|
||
|
str = str .. " ]"
|
||
|
return str
|
||
|
end
|
||
|
|
||
|
--- Convert a matrix to row vec4s.
|
||
|
-- @tparam mat4 a Matrix to be converted
|
||
|
-- @treturn table vec4s
|
||
|
function mat4.to_vec4s(a)
|
||
|
return {
|
||
|
{ a[1], a[2], a[3], a[4] },
|
||
|
{ a[5], a[6], a[7], a[8] },
|
||
|
{ a[9], a[10], a[11], a[12] },
|
||
|
{ a[13], a[14], a[15], a[16] }
|
||
|
}
|
||
|
end
|
||
|
|
||
|
--- Convert a matrix to col vec4s.
|
||
|
-- @tparam mat4 a Matrix to be converted
|
||
|
-- @treturn table vec4s
|
||
|
function mat4.to_vec4s_cols(a)
|
||
|
return {
|
||
|
{ a[1], a[5], a[9], a[13] },
|
||
|
{ a[2], a[6], a[10], a[14] },
|
||
|
{ a[3], a[7], a[11], a[15] },
|
||
|
{ a[4], a[8], a[12], a[16] }
|
||
|
}
|
||
|
end
|
||
|
|
||
|
-- http://www.euclideanspace.com/maths/geometry/rotations/conversions/matrixToQuaternion/
|
||
|
--- Convert a matrix to a quaternion.
|
||
|
-- @tparam mat4 a Matrix to be converted
|
||
|
-- @treturn quat out
|
||
|
function mat4.to_quat(a)
|
||
|
identity(tmp):transpose(a)
|
||
|
|
||
|
local w = sqrt(1 + tmp[1] + tmp[6] + tmp[11]) / 2
|
||
|
local scale = w * 4
|
||
|
local q = quat.new(
|
||
|
tmp[10] - tmp[7] / scale,
|
||
|
tmp[3] - tmp[9] / scale,
|
||
|
tmp[5] - tmp[2] / scale,
|
||
|
w
|
||
|
)
|
||
|
|
||
|
return q:normalize(q)
|
||
|
end
|
||
|
|
||
|
-- http://www.crownandcutlass.com/features/technicaldetails/frustum.html
|
||
|
--- Convert a matrix to a frustum.
|
||
|
-- @tparam mat4 a Matrix to be converted (projection * view)
|
||
|
-- @tparam boolean infinite Infinite removes the far plane
|
||
|
-- @treturn frustum out
|
||
|
function mat4.to_frustum(a, infinite)
|
||
|
local t
|
||
|
local frustum = {}
|
||
|
|
||
|
-- Extract the LEFT plane
|
||
|
frustum.left = {}
|
||
|
frustum.left.a = a[4] + a[1]
|
||
|
frustum.left.b = a[8] + a[5]
|
||
|
frustum.left.c = a[12] + a[9]
|
||
|
frustum.left.d = a[16] + a[13]
|
||
|
|
||
|
-- Normalize the result
|
||
|
t = sqrt(frustum.left.a * frustum.left.a + frustum.left.b * frustum.left.b + frustum.left.c * frustum.left.c)
|
||
|
frustum.left.a = frustum.left.a / t
|
||
|
frustum.left.b = frustum.left.b / t
|
||
|
frustum.left.c = frustum.left.c / t
|
||
|
frustum.left.d = frustum.left.d / t
|
||
|
|
||
|
-- Extract the RIGHT plane
|
||
|
frustum.right = {}
|
||
|
frustum.right.a = a[4] - a[1]
|
||
|
frustum.right.b = a[8] - a[5]
|
||
|
frustum.right.c = a[12] - a[9]
|
||
|
frustum.right.d = a[16] - a[13]
|
||
|
|
||
|
-- Normalize the result
|
||
|
t = sqrt(frustum.right.a * frustum.right.a + frustum.right.b * frustum.right.b + frustum.right.c * frustum.right.c)
|
||
|
frustum.right.a = frustum.right.a / t
|
||
|
frustum.right.b = frustum.right.b / t
|
||
|
frustum.right.c = frustum.right.c / t
|
||
|
frustum.right.d = frustum.right.d / t
|
||
|
|
||
|
-- Extract the BOTTOM plane
|
||
|
frustum.bottom = {}
|
||
|
frustum.bottom.a = a[4] + a[2]
|
||
|
frustum.bottom.b = a[8] + a[6]
|
||
|
frustum.bottom.c = a[12] + a[10]
|
||
|
frustum.bottom.d = a[16] + a[14]
|
||
|
|
||
|
-- Normalize the result
|
||
|
t = sqrt(frustum.bottom.a * frustum.bottom.a + frustum.bottom.b * frustum.bottom.b + frustum.bottom.c * frustum.bottom.c)
|
||
|
frustum.bottom.a = frustum.bottom.a / t
|
||
|
frustum.bottom.b = frustum.bottom.b / t
|
||
|
frustum.bottom.c = frustum.bottom.c / t
|
||
|
frustum.bottom.d = frustum.bottom.d / t
|
||
|
|
||
|
-- Extract the TOP plane
|
||
|
frustum.top = {}
|
||
|
frustum.top.a = a[4] - a[2]
|
||
|
frustum.top.b = a[8] - a[6]
|
||
|
frustum.top.c = a[12] - a[10]
|
||
|
frustum.top.d = a[16] - a[14]
|
||
|
|
||
|
-- Normalize the result
|
||
|
t = sqrt(frustum.top.a * frustum.top.a + frustum.top.b * frustum.top.b + frustum.top.c * frustum.top.c)
|
||
|
frustum.top.a = frustum.top.a / t
|
||
|
frustum.top.b = frustum.top.b / t
|
||
|
frustum.top.c = frustum.top.c / t
|
||
|
frustum.top.d = frustum.top.d / t
|
||
|
|
||
|
-- Extract the NEAR plane
|
||
|
frustum.near = {}
|
||
|
frustum.near.a = a[4] + a[3]
|
||
|
frustum.near.b = a[8] + a[7]
|
||
|
frustum.near.c = a[12] + a[11]
|
||
|
frustum.near.d = a[16] + a[15]
|
||
|
|
||
|
-- Normalize the result
|
||
|
t = sqrt(frustum.near.a * frustum.near.a + frustum.near.b * frustum.near.b + frustum.near.c * frustum.near.c)
|
||
|
frustum.near.a = frustum.near.a / t
|
||
|
frustum.near.b = frustum.near.b / t
|
||
|
frustum.near.c = frustum.near.c / t
|
||
|
frustum.near.d = frustum.near.d / t
|
||
|
|
||
|
if not infinite then
|
||
|
-- Extract the FAR plane
|
||
|
frustum.far = {}
|
||
|
frustum.far.a = a[4] - a[3]
|
||
|
frustum.far.b = a[8] - a[7]
|
||
|
frustum.far.c = a[12] - a[11]
|
||
|
frustum.far.d = a[16] - a[15]
|
||
|
|
||
|
-- Normalize the result
|
||
|
t = sqrt(frustum.far.a * frustum.far.a + frustum.far.b * frustum.far.b + frustum.far.c * frustum.far.c)
|
||
|
frustum.far.a = frustum.far.a / t
|
||
|
frustum.far.b = frustum.far.b / t
|
||
|
frustum.far.c = frustum.far.c / t
|
||
|
frustum.far.d = frustum.far.d / t
|
||
|
end
|
||
|
|
||
|
return frustum
|
||
|
end
|
||
|
|
||
|
function mat4_mt.__index(t, k)
|
||
|
if type(t) == "cdata" then
|
||
|
if type(k) == "number" then
|
||
|
return t._m[k-1]
|
||
|
end
|
||
|
end
|
||
|
|
||
|
return rawget(mat4, k)
|
||
|
end
|
||
|
|
||
|
function mat4_mt.__newindex(t, k, v)
|
||
|
if type(t) == "cdata" then
|
||
|
if type(k) == "number" then
|
||
|
t._m[k-1] = v
|
||
|
end
|
||
|
end
|
||
|
end
|
||
|
|
||
|
mat4_mt.__tostring = mat4.to_string
|
||
|
|
||
|
function mat4_mt.__call(_, a)
|
||
|
return mat4.new(a)
|
||
|
end
|
||
|
|
||
|
function mat4_mt.__unm(a)
|
||
|
return new():invert(a)
|
||
|
end
|
||
|
|
||
|
function mat4_mt.__eq(a, b)
|
||
|
if not mat4.is_mat4(a) or not mat4.is_mat4(b) then
|
||
|
return false
|
||
|
end
|
||
|
|
||
|
for i = 1, 16 do
|
||
|
if not utils.tolerance(b[i]-a[i], constants.FLT_EPSILON) then
|
||
|
return false
|
||
|
end
|
||
|
end
|
||
|
|
||
|
return true
|
||
|
end
|
||
|
|
||
|
function mat4_mt.__mul(a, b)
|
||
|
precond.assert(mat4.is_mat4(a), "__mul: Wrong argument type '%s' for left hand operand. (<cpml.mat4> expected)", type(a))
|
||
|
|
||
|
if vec3.is_vec3(b) then
|
||
|
return mat4.mul_vec3_perspective(vec3(), a, b)
|
||
|
end
|
||
|
|
||
|
assert(mat4.is_mat4(b) or #b == 4, "__mul: Wrong argument type for right hand operand. (<cpml.mat4> or table #4 expected)")
|
||
|
|
||
|
if mat4.is_mat4(b) then
|
||
|
return new():mul(a, b)
|
||
|
end
|
||
|
|
||
|
return mat4.mul_vec4({}, a, b)
|
||
|
end
|
||
|
|
||
|
if status then
|
||
|
xpcall(function() -- Allow this to silently fail; assume failure means someone messed with package.loaded
|
||
|
ffi.metatype(new, mat4_mt)
|
||
|
end, function() end)
|
||
|
end
|
||
|
|
||
|
return setmetatable({}, mat4_mt)
|