cambridge/libs/cpml/mat4.lua

944 lines
26 KiB
Lua
Raw Normal View History

2022-07-04 23:05:40 -05:00
--- double 4x4, 1-based, column major matrices
-- @module mat4
local modules = (...):gsub('%.[^%.]+$', '') .. "."
local constants = require(modules .. "constants")
local vec2 = require(modules .. "vec2")
local vec3 = require(modules .. "vec3")
local quat = require(modules .. "quat")
local utils = require(modules .. "utils")
local precond = require(modules .. "_private_precond")
local private = require(modules .. "_private_utils")
local sqrt = math.sqrt
local cos = math.cos
local sin = math.sin
local tan = math.tan
local rad = math.rad
local mat4 = {}
local mat4_mt = {}
-- Private constructor.
local function new(m)
m = m or {
0, 0, 0, 0,
0, 0, 0, 0,
0, 0, 0, 0,
0, 0, 0, 0
}
m._m = m
return setmetatable(m, mat4_mt)
end
-- Convert matrix into identity
local function identity(m)
m[1], m[2], m[3], m[4] = 1, 0, 0, 0
m[5], m[6], m[7], m[8] = 0, 1, 0, 0
m[9], m[10], m[11], m[12] = 0, 0, 1, 0
m[13], m[14], m[15], m[16] = 0, 0, 0, 1
return m
end
-- Do the check to see if JIT is enabled. If so use the optimized FFI structs.
local status, ffi
if type(jit) == "table" and jit.status() then
-- status, ffi = pcall(require, "ffi")
if status then
ffi.cdef "typedef struct { double _m[16]; } cpml_mat4;"
new = ffi.typeof("cpml_mat4")
end
end
-- Statically allocate a temporary variable used in some of our functions.
local tmp = new()
local tm4 = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }
local tv4 = { 0, 0, 0, 0 }
--- The public constructor.
-- @param a Can be of four types: </br>
-- table Length 16 (4x4 matrix)
-- table Length 9 (3x3 matrix)
-- table Length 4 (4 vec4s)
-- nil
-- @treturn mat4 out
function mat4.new(a)
local out = new()
-- 4x4 matrix
if type(a) == "table" and #a == 16 then
for i = 1, 16 do
out[i] = tonumber(a[i])
end
-- 3x3 matrix
elseif type(a) == "table" and #a == 9 then
out[1], out[2], out[3] = a[1], a[2], a[3]
out[5], out[6], out[7] = a[4], a[5], a[6]
out[9], out[10], out[11] = a[7], a[8], a[9]
out[16] = 1
-- 4 vec4s
elseif type(a) == "table" and type(a[1]) == "table" then
local idx = 1
for i = 1, 4 do
for j = 1, 4 do
out[idx] = a[i][j]
idx = idx + 1
end
end
-- nil
else
out[1] = 1
out[6] = 1
out[11] = 1
out[16] = 1
end
return out
end
--- Create an identity matrix.
-- @tparam mat4 a Matrix to overwrite
-- @treturn mat4 out
function mat4.identity(a)
return identity(a or new())
end
--- Create a matrix from an angle/axis pair.
-- @tparam number angle Angle of rotation
-- @tparam vec3 axis Axis of rotation
-- @treturn mat4 out
function mat4.from_angle_axis(angle, axis)
local l = axis:len()
if l == 0 then
return new()
end
local x, y, z = axis.x / l, axis.y / l, axis.z / l
local c = cos(angle)
local s = sin(angle)
return new {
x*x*(1-c)+c, y*x*(1-c)+z*s, x*z*(1-c)-y*s, 0,
x*y*(1-c)-z*s, y*y*(1-c)+c, y*z*(1-c)+x*s, 0,
x*z*(1-c)+y*s, y*z*(1-c)-x*s, z*z*(1-c)+c, 0,
0, 0, 0, 1
}
end
--- Create a matrix from a quaternion.
-- @tparam quat q Rotation quaternion
-- @treturn mat4 out
function mat4.from_quaternion(q)
return mat4.from_angle_axis(q:to_angle_axis())
end
--- Create a matrix from a direction/up pair.
-- @tparam vec3 direction Vector direction
-- @tparam vec3 up Up direction
-- @treturn mat4 out
function mat4.from_direction(direction, up)
local forward = vec3.normalize(direction)
local side = vec3.cross(forward, up):normalize()
local new_up = vec3.cross(side, forward):normalize()
local out = new()
out[1] = side.x
out[5] = side.y
out[9] = side.z
out[2] = new_up.x
out[6] = new_up.y
out[10] = new_up.z
out[3] = forward.x
out[7] = forward.y
out[11] = forward.z
out[16] = 1
return out
end
--- Create a matrix from a transform.
-- @tparam vec3 trans Translation vector
-- @tparam quat rot Rotation quaternion
-- @tparam vec3 scale Scale vector
-- @treturn mat4 out
function mat4.from_transform(trans, rot, scale)
local rx, ry, rz, rw = rot.x, rot.y, rot.z, rot.w
local sm = new {
scale.x, 0, 0, 0,
0, scale.y, 0, 0,
0, 0, scale.z, 0,
0, 0, 0, 1,
}
local rm = new {
1-2*(ry*ry+rz*rz), 2*(rx*ry-rz*rw), 2*(rx*rz+ry*rw), 0,
2*(rx*ry+rz*rw), 1-2*(rx*rx+rz*rz), 2*(ry*rz-rx*rw), 0,
2*(rx*rz-ry*rw), 2*(ry*rz+rx*rw), 1-2*(rx*rx+ry*ry), 0,
0, 0, 0, 1
}
local rsm = rm * sm
rsm[13] = trans.x
rsm[14] = trans.y
rsm[15] = trans.z
return rsm
end
--- Create matrix from orthogonal.
-- @tparam number left
-- @tparam number right
-- @tparam number top
-- @tparam number bottom
-- @tparam number near
-- @tparam number far
-- @treturn mat4 out
function mat4.from_ortho(left, right, top, bottom, near, far)
local out = new()
out[1] = 2 / (right - left)
out[6] = 2 / (top - bottom)
out[11] = -2 / (far - near)
out[13] = -((right + left) / (right - left))
out[14] = -((top + bottom) / (top - bottom))
out[15] = -((far + near) / (far - near))
out[16] = 1
return out
end
--- Create matrix from perspective.
-- @tparam number fovy Field of view
-- @tparam number aspect Aspect ratio
-- @tparam number near Near plane
-- @tparam number far Far plane
-- @treturn mat4 out
function mat4.from_perspective(fovy, aspect, near, far)
assert(aspect ~= 0)
assert(near ~= far)
local t = tan(rad(fovy) / 2)
local out = new()
out[1] = 1 / (t * aspect)
out[6] = 1 / t
out[11] = -(far + near) / (far - near)
out[12] = -1
out[15] = -(2 * far * near) / (far - near)
out[16] = 0
return out
end
-- Adapted from the Oculus SDK.
--- Create matrix from HMD perspective.
-- @tparam number tanHalfFov Tangent of half of the field of view
-- @tparam number zNear Near plane
-- @tparam number zFar Far plane
-- @tparam boolean flipZ Z axis is flipped or not
-- @tparam boolean farAtInfinity Far plane is infinite or not
-- @treturn mat4 out
function mat4.from_hmd_perspective(tanHalfFov, zNear, zFar, flipZ, farAtInfinity)
-- CPML is right-handed and intended for GL, so these don't need to be arguments.
local rightHanded = true
local isOpenGL = true
local function CreateNDCScaleAndOffsetFromFov(tanHalfFov)
local x_scale = 2 / (tanHalfFov.LeftTan + tanHalfFov.RightTan)
local x_offset = (tanHalfFov.LeftTan - tanHalfFov.RightTan) * x_scale * 0.5
local y_scale = 2 / (tanHalfFov.UpTan + tanHalfFov.DownTan )
local y_offset = (tanHalfFov.UpTan - tanHalfFov.DownTan ) * y_scale * 0.5
local result = {
Scale = vec2(x_scale, y_scale),
Offset = vec2(x_offset, y_offset)
}
-- Hey - why is that Y.Offset negated?
-- It's because a projection matrix transforms from world coords with Y=up,
-- whereas this is from NDC which is Y=down.
return result
end
if not flipZ and farAtInfinity then
print("Error: Cannot push Far Clip to Infinity when Z-order is not flipped")
farAtInfinity = false
end
-- A projection matrix is very like a scaling from NDC, so we can start with that.
local scaleAndOffset = CreateNDCScaleAndOffsetFromFov(tanHalfFov)
local handednessScale = rightHanded and -1.0 or 1.0
local projection = new()
-- Produces X result, mapping clip edges to [-w,+w]
projection[1] = scaleAndOffset.Scale.x
projection[2] = 0
projection[3] = handednessScale * scaleAndOffset.Offset.x
projection[4] = 0
-- Produces Y result, mapping clip edges to [-w,+w]
-- Hey - why is that YOffset negated?
-- It's because a projection matrix transforms from world coords with Y=up,
-- whereas this is derived from an NDC scaling, which is Y=down.
projection[5] = 0
projection[6] = scaleAndOffset.Scale.y
projection[7] = handednessScale * -scaleAndOffset.Offset.y
projection[8] = 0
-- Produces Z-buffer result - app needs to fill this in with whatever Z range it wants.
-- We'll just use some defaults for now.
projection[9] = 0
projection[10] = 0
if farAtInfinity then
if isOpenGL then
-- It's not clear this makes sense for OpenGL - you don't get the same precision benefits you do in D3D.
projection[11] = -handednessScale
projection[12] = 2.0 * zNear
else
projection[11] = 0
projection[12] = zNear
end
else
if isOpenGL then
-- Clip range is [-w,+w], so 0 is at the middle of the range.
projection[11] = -handednessScale * (flipZ and -1.0 or 1.0) * (zNear + zFar) / (zNear - zFar)
projection[12] = 2.0 * ((flipZ and -zFar or zFar) * zNear) / (zNear - zFar)
else
-- Clip range is [0,+w], so 0 is at the start of the range.
projection[11] = -handednessScale * (flipZ and -zNear or zFar) / (zNear - zFar)
projection[12] = ((flipZ and -zFar or zFar) * zNear) / (zNear - zFar)
end
end
-- Produces W result (= Z in)
projection[13] = 0
projection[14] = 0
projection[15] = handednessScale
projection[16] = 0
return projection:transpose(projection)
end
--- Clone a matrix.
-- @tparam mat4 a Matrix to clone
-- @treturn mat4 out
function mat4.clone(a)
return new(a)
end
function mul_internal(out, a, b)
tm4[1] = b[1] * a[1] + b[2] * a[5] + b[3] * a[9] + b[4] * a[13]
tm4[2] = b[1] * a[2] + b[2] * a[6] + b[3] * a[10] + b[4] * a[14]
tm4[3] = b[1] * a[3] + b[2] * a[7] + b[3] * a[11] + b[4] * a[15]
tm4[4] = b[1] * a[4] + b[2] * a[8] + b[3] * a[12] + b[4] * a[16]
tm4[5] = b[5] * a[1] + b[6] * a[5] + b[7] * a[9] + b[8] * a[13]
tm4[6] = b[5] * a[2] + b[6] * a[6] + b[7] * a[10] + b[8] * a[14]
tm4[7] = b[5] * a[3] + b[6] * a[7] + b[7] * a[11] + b[8] * a[15]
tm4[8] = b[5] * a[4] + b[6] * a[8] + b[7] * a[12] + b[8] * a[16]
tm4[9] = b[9] * a[1] + b[10] * a[5] + b[11] * a[9] + b[12] * a[13]
tm4[10] = b[9] * a[2] + b[10] * a[6] + b[11] * a[10] + b[12] * a[14]
tm4[11] = b[9] * a[3] + b[10] * a[7] + b[11] * a[11] + b[12] * a[15]
tm4[12] = b[9] * a[4] + b[10] * a[8] + b[11] * a[12] + b[12] * a[16]
tm4[13] = b[13] * a[1] + b[14] * a[5] + b[15] * a[9] + b[16] * a[13]
tm4[14] = b[13] * a[2] + b[14] * a[6] + b[15] * a[10] + b[16] * a[14]
tm4[15] = b[13] * a[3] + b[14] * a[7] + b[15] * a[11] + b[16] * a[15]
tm4[16] = b[13] * a[4] + b[14] * a[8] + b[15] * a[12] + b[16] * a[16]
for i = 1, 16 do
out[i] = tm4[i]
end
end
--- Multiply N matrices.
-- @tparam mat4 out Matrix to store the result
-- @tparam mat4 or {mat4, ...} left hand operand(s)
-- @tparam mat4 right hand operand if a is not table
-- @treturn mat4 out multiplied matrix result
function mat4.mul(out, a, b)
if mat4.is_mat4(a) then
mul_internal(out, a, b)
return out
end
if #a == 0 then
identity(out)
elseif #a == 1 then
-- only one matrix, just copy
for i = 1, 16 do
out[i] = a[1][i]
end
else
local ma = a[1]
local mb = a[2]
for i = 2, #a do
mul_internal(out, ma, mb)
ma = out
end
end
return out
end
--- Multiply a matrix and a vec3, with perspective division.
-- This function uses an implicit 1 for the fourth component.
-- @tparam vec3 out vec3 to store the result
-- @tparam mat4 a Left hand operand
-- @tparam vec3 b Right hand operand
-- @treturn vec3 out
function mat4.mul_vec3_perspective(out, a, b)
local v4x = b.x * a[1] + b.y * a[5] + b.z * a[9] + a[13]
local v4y = b.x * a[2] + b.y * a[6] + b.z * a[10] + a[14]
local v4z = b.x * a[3] + b.y * a[7] + b.z * a[11] + a[15]
local v4w = b.x * a[4] + b.y * a[8] + b.z * a[12] + a[16]
local inv_w = 0
if v4w ~= 0 then
inv_w = utils.sign(v4w) / v4w
end
out.x = v4x * inv_w
out.y = v4y * inv_w
out.z = v4z * inv_w
return out
end
--- Multiply a matrix and a vec4.
-- @tparam table out table to store the result
-- @tparam mat4 a Left hand operand
-- @tparam table b Right hand operand
-- @treturn vec4 out
function mat4.mul_vec4(out, a, b)
tv4[1] = b[1] * a[1] + b[2] * a[5] + b [3] * a[9] + b[4] * a[13]
tv4[2] = b[1] * a[2] + b[2] * a[6] + b [3] * a[10] + b[4] * a[14]
tv4[3] = b[1] * a[3] + b[2] * a[7] + b [3] * a[11] + b[4] * a[15]
tv4[4] = b[1] * a[4] + b[2] * a[8] + b [3] * a[12] + b[4] * a[16]
for i = 1, 4 do
out[i] = tv4[i]
end
return out
end
--- Invert a matrix.
-- @tparam mat4 out Matrix to store the result
-- @tparam mat4 a Matrix to invert
-- @treturn mat4 out
function mat4.invert(out, a)
tm4[1] = a[6] * a[11] * a[16] - a[6] * a[12] * a[15] - a[10] * a[7] * a[16] + a[10] * a[8] * a[15] + a[14] * a[7] * a[12] - a[14] * a[8] * a[11]
tm4[2] = -a[2] * a[11] * a[16] + a[2] * a[12] * a[15] + a[10] * a[3] * a[16] - a[10] * a[4] * a[15] - a[14] * a[3] * a[12] + a[14] * a[4] * a[11]
tm4[3] = a[2] * a[7] * a[16] - a[2] * a[8] * a[15] - a[6] * a[3] * a[16] + a[6] * a[4] * a[15] + a[14] * a[3] * a[8] - a[14] * a[4] * a[7]
tm4[4] = -a[2] * a[7] * a[12] + a[2] * a[8] * a[11] + a[6] * a[3] * a[12] - a[6] * a[4] * a[11] - a[10] * a[3] * a[8] + a[10] * a[4] * a[7]
tm4[5] = -a[5] * a[11] * a[16] + a[5] * a[12] * a[15] + a[9] * a[7] * a[16] - a[9] * a[8] * a[15] - a[13] * a[7] * a[12] + a[13] * a[8] * a[11]
tm4[6] = a[1] * a[11] * a[16] - a[1] * a[12] * a[15] - a[9] * a[3] * a[16] + a[9] * a[4] * a[15] + a[13] * a[3] * a[12] - a[13] * a[4] * a[11]
tm4[7] = -a[1] * a[7] * a[16] + a[1] * a[8] * a[15] + a[5] * a[3] * a[16] - a[5] * a[4] * a[15] - a[13] * a[3] * a[8] + a[13] * a[4] * a[7]
tm4[8] = a[1] * a[7] * a[12] - a[1] * a[8] * a[11] - a[5] * a[3] * a[12] + a[5] * a[4] * a[11] + a[9] * a[3] * a[8] - a[9] * a[4] * a[7]
tm4[9] = a[5] * a[10] * a[16] - a[5] * a[12] * a[14] - a[9] * a[6] * a[16] + a[9] * a[8] * a[14] + a[13] * a[6] * a[12] - a[13] * a[8] * a[10]
tm4[10] = -a[1] * a[10] * a[16] + a[1] * a[12] * a[14] + a[9] * a[2] * a[16] - a[9] * a[4] * a[14] - a[13] * a[2] * a[12] + a[13] * a[4] * a[10]
tm4[11] = a[1] * a[6] * a[16] - a[1] * a[8] * a[14] - a[5] * a[2] * a[16] + a[5] * a[4] * a[14] + a[13] * a[2] * a[8] - a[13] * a[4] * a[6]
tm4[12] = -a[1] * a[6] * a[12] + a[1] * a[8] * a[10] + a[5] * a[2] * a[12] - a[5] * a[4] * a[10] - a[9] * a[2] * a[8] + a[9] * a[4] * a[6]
tm4[13] = -a[5] * a[10] * a[15] + a[5] * a[11] * a[14] + a[9] * a[6] * a[15] - a[9] * a[7] * a[14] - a[13] * a[6] * a[11] + a[13] * a[7] * a[10]
tm4[14] = a[1] * a[10] * a[15] - a[1] * a[11] * a[14] - a[9] * a[2] * a[15] + a[9] * a[3] * a[14] + a[13] * a[2] * a[11] - a[13] * a[3] * a[10]
tm4[15] = -a[1] * a[6] * a[15] + a[1] * a[7] * a[14] + a[5] * a[2] * a[15] - a[5] * a[3] * a[14] - a[13] * a[2] * a[7] + a[13] * a[3] * a[6]
tm4[16] = a[1] * a[6] * a[11] - a[1] * a[7] * a[10] - a[5] * a[2] * a[11] + a[5] * a[3] * a[10] + a[9] * a[2] * a[7] - a[9] * a[3] * a[6]
local det = a[1] * tm4[1] + a[2] * tm4[5] + a[3] * tm4[9] + a[4] * tm4[13]
if det == 0 then return a end
det = 1 / det
for i = 1, 16 do
out[i] = tm4[i] * det
end
return out
end
--- Scale a matrix.
-- @tparam mat4 out Matrix to store the result
-- @tparam mat4 a Matrix to scale
-- @tparam vec3 s Scalar
-- @treturn mat4 out
function mat4.scale(out, a, s)
identity(tmp)
tmp[1] = s.x
tmp[6] = s.y
tmp[11] = s.z
return out:mul(tmp, a)
end
--- Rotate a matrix.
-- @tparam mat4 out Matrix to store the result
-- @tparam mat4 a Matrix to rotate
-- @tparam number angle Angle to rotate by (in radians)
-- @tparam vec3 axis Axis to rotate on
-- @treturn mat4 out
function mat4.rotate(out, a, angle, axis)
if type(angle) == "table" or type(angle) == "cdata" then
angle, axis = angle:to_angle_axis()
end
local l = axis:len()
if l == 0 then
return a
end
local x, y, z = axis.x / l, axis.y / l, axis.z / l
local c = cos(angle)
local s = sin(angle)
identity(tmp)
tmp[1] = x * x * (1 - c) + c
tmp[2] = y * x * (1 - c) + z * s
tmp[3] = x * z * (1 - c) - y * s
tmp[5] = x * y * (1 - c) - z * s
tmp[6] = y * y * (1 - c) + c
tmp[7] = y * z * (1 - c) + x * s
tmp[9] = x * z * (1 - c) + y * s
tmp[10] = y * z * (1 - c) - x * s
tmp[11] = z * z * (1 - c) + c
return out:mul(tmp, a)
end
--- Translate a matrix.
-- @tparam mat4 out Matrix to store the result
-- @tparam mat4 a Matrix to translate
-- @tparam vec3 t Translation vector
-- @treturn mat4 out
function mat4.translate(out, a, t)
identity(tmp)
tmp[13] = t.x
tmp[14] = t.y
tmp[15] = t.z
return out:mul(tmp, a)
end
--- Shear a matrix.
-- @tparam mat4 out Matrix to store the result
-- @tparam mat4 a Matrix to translate
-- @tparam number yx
-- @tparam number zx
-- @tparam number xy
-- @tparam number zy
-- @tparam number xz
-- @tparam number yz
-- @treturn mat4 out
function mat4.shear(out, a, yx, zx, xy, zy, xz, yz)
identity(tmp)
tmp[2] = yx or 0
tmp[3] = zx or 0
tmp[5] = xy or 0
tmp[7] = zy or 0
tmp[9] = xz or 0
tmp[10] = yz or 0
return out:mul(tmp, a)
end
--- Reflect a matrix across a plane.
-- @tparam mat4 Matrix to store the result
-- @tparam a Matrix to reflect
-- @tparam vec3 position A point on the plane
-- @tparam vec3 normal The (normalized!) normal vector of the plane
function mat4.reflect(out, a, position, normal)
local nx, ny, nz = normal:unpack()
local d = -position:dot(normal)
tmp[1] = 1 - 2 * nx ^ 2
tmp[2] = 2 * nx * ny
tmp[3] = -2 * nx * nz
tmp[4] = 0
tmp[5] = -2 * nx * ny
tmp[6] = 1 - 2 * ny ^ 2
tmp[7] = -2 * ny * nz
tmp[8] = 0
tmp[9] = -2 * nx * nz
tmp[10] = -2 * ny * nz
tmp[11] = 1 - 2 * nz ^ 2
tmp[12] = 0
tmp[13] = -2 * nx * d
tmp[14] = -2 * ny * d
tmp[15] = -2 * nz * d
tmp[16] = 1
return out:mul(tmp, a)
end
--- Transform matrix to look at a point.
-- @tparam mat4 out Matrix to store result
-- @tparam vec3 eye Location of viewer's view plane
-- @tparam vec3 center Location of object to view
-- @tparam vec3 up Up direction
-- @treturn mat4 out
function mat4.look_at(out, eye, look_at, up)
local z_axis = (eye - look_at):normalize()
local x_axis = up:cross(z_axis):normalize()
local y_axis = z_axis:cross(x_axis)
out[1] = x_axis.x
out[2] = y_axis.x
out[3] = z_axis.x
out[4] = 0
out[5] = x_axis.y
out[6] = y_axis.y
out[7] = z_axis.y
out[8] = 0
out[9] = x_axis.z
out[10] = y_axis.z
out[11] = z_axis.z
out[12] = 0
out[13] = -out[ 1]*eye.x - out[4+1]*eye.y - out[8+1]*eye.z
out[14] = -out[ 2]*eye.x - out[4+2]*eye.y - out[8+2]*eye.z
out[15] = -out[ 3]*eye.x - out[4+3]*eye.y - out[8+3]*eye.z
out[16] = -out[ 4]*eye.x - out[4+4]*eye.y - out[8+4]*eye.z + 1
return out
end
--- Transform matrix to target a point.
-- @tparam mat4 out Matrix to store result
-- @tparam vec3 eye Location of viewer's view plane
-- @tparam vec3 center Location of object to view
-- @tparam vec3 up Up direction
-- @treturn mat4 out
function mat4.target(out, from, to, up)
local z_axis = (from - to):normalize()
local x_axis = up:cross(z_axis):normalize()
local y_axis = z_axis:cross(x_axis)
out[1] = x_axis.x
out[2] = x_axis.y
out[3] = x_axis.z
out[4] = 0
out[5] = y_axis.x
out[6] = y_axis.y
out[7] = y_axis.z
out[8] = 0
out[9] = z_axis.x
out[10] = z_axis.y
out[11] = z_axis.z
out[12] = 0
out[13] = from.x
out[14] = from.y
out[15] = from.z
out[16] = 1
return out
end
--- Transpose a matrix.
-- @tparam mat4 out Matrix to store the result
-- @tparam mat4 a Matrix to transpose
-- @treturn mat4 out
function mat4.transpose(out, a)
tm4[1] = a[1]
tm4[2] = a[5]
tm4[3] = a[9]
tm4[4] = a[13]
tm4[5] = a[2]
tm4[6] = a[6]
tm4[7] = a[10]
tm4[8] = a[14]
tm4[9] = a[3]
tm4[10] = a[7]
tm4[11] = a[11]
tm4[12] = a[15]
tm4[13] = a[4]
tm4[14] = a[8]
tm4[15] = a[12]
tm4[16] = a[16]
for i = 1, 16 do
out[i] = tm4[i]
end
return out
end
--- Project a point into screen space
-- @tparam vec3 obj Object position in world space
-- @tparam mat4 mvp Projection matrix
-- @tparam table viewport XYWH of viewport
-- @treturn vec3 win
function mat4.project(obj, mvp, viewport)
local point = mat4.mul_vec3_perspective(vec3(), mvp, obj)
point.x = point.x * 0.5 + 0.5
point.y = point.y * 0.5 + 0.5
point.z = point.z * 0.5 + 0.5
point.x = point.x * viewport[3] + viewport[1]
point.y = point.y * viewport[4] + viewport[2]
return point
end
--- Unproject a point from screen space to world space.
-- @tparam vec3 win Object position in screen space
-- @tparam mat4 mvp Projection matrix
-- @tparam table viewport XYWH of viewport
-- @treturn vec3 obj
function mat4.unproject(win, mvp, viewport)
local point = vec3.clone(win)
-- 0..n -> 0..1
point.x = (point.x - viewport[1]) / viewport[3]
point.y = (point.y - viewport[2]) / viewport[4]
-- 0..1 -> -1..1
point.x = point.x * 2 - 1
point.y = point.y * 2 - 1
point.z = point.z * 2 - 1
return mat4.mul_vec3_perspective(point, tmp:invert(mvp), point)
end
--- Return a boolean showing if a table is or is not a mat4.
-- @tparam mat4 a Matrix to be tested
-- @treturn boolean is_mat4
function mat4.is_mat4(a)
if type(a) == "cdata" then
return ffi.istype("cpml_mat4", a)
end
if type(a) ~= "table" then
return false
end
for i = 1, 16 do
if type(a[i]) ~= "number" then
return false
end
end
return true
end
--- Return whether any component is NaN
-- @tparam mat4 a Matrix to be tested
-- @treturn boolean if any component is NaN
function vec2.has_nan(a)
for i = 1, 16 do
if private.is_nan(a[i]) then
return true
end
end
return false
end
--- Return a formatted string.
-- @tparam mat4 a Matrix to be turned into a string
-- @treturn string formatted
function mat4.to_string(a)
local str = "[ "
for i = 1, 16 do
str = str .. string.format("%+0.3f", a[i])
if i < 16 then
str = str .. ", "
end
end
str = str .. " ]"
return str
end
--- Convert a matrix to row vec4s.
-- @tparam mat4 a Matrix to be converted
-- @treturn table vec4s
function mat4.to_vec4s(a)
return {
{ a[1], a[2], a[3], a[4] },
{ a[5], a[6], a[7], a[8] },
{ a[9], a[10], a[11], a[12] },
{ a[13], a[14], a[15], a[16] }
}
end
--- Convert a matrix to col vec4s.
-- @tparam mat4 a Matrix to be converted
-- @treturn table vec4s
function mat4.to_vec4s_cols(a)
return {
{ a[1], a[5], a[9], a[13] },
{ a[2], a[6], a[10], a[14] },
{ a[3], a[7], a[11], a[15] },
{ a[4], a[8], a[12], a[16] }
}
end
-- http://www.euclideanspace.com/maths/geometry/rotations/conversions/matrixToQuaternion/
--- Convert a matrix to a quaternion.
-- @tparam mat4 a Matrix to be converted
-- @treturn quat out
function mat4.to_quat(a)
identity(tmp):transpose(a)
local w = sqrt(1 + tmp[1] + tmp[6] + tmp[11]) / 2
local scale = w * 4
local q = quat.new(
tmp[10] - tmp[7] / scale,
tmp[3] - tmp[9] / scale,
tmp[5] - tmp[2] / scale,
w
)
return q:normalize(q)
end
-- http://www.crownandcutlass.com/features/technicaldetails/frustum.html
--- Convert a matrix to a frustum.
-- @tparam mat4 a Matrix to be converted (projection * view)
-- @tparam boolean infinite Infinite removes the far plane
-- @treturn frustum out
function mat4.to_frustum(a, infinite)
local t
local frustum = {}
-- Extract the LEFT plane
frustum.left = {}
frustum.left.a = a[4] + a[1]
frustum.left.b = a[8] + a[5]
frustum.left.c = a[12] + a[9]
frustum.left.d = a[16] + a[13]
-- Normalize the result
t = sqrt(frustum.left.a * frustum.left.a + frustum.left.b * frustum.left.b + frustum.left.c * frustum.left.c)
frustum.left.a = frustum.left.a / t
frustum.left.b = frustum.left.b / t
frustum.left.c = frustum.left.c / t
frustum.left.d = frustum.left.d / t
-- Extract the RIGHT plane
frustum.right = {}
frustum.right.a = a[4] - a[1]
frustum.right.b = a[8] - a[5]
frustum.right.c = a[12] - a[9]
frustum.right.d = a[16] - a[13]
-- Normalize the result
t = sqrt(frustum.right.a * frustum.right.a + frustum.right.b * frustum.right.b + frustum.right.c * frustum.right.c)
frustum.right.a = frustum.right.a / t
frustum.right.b = frustum.right.b / t
frustum.right.c = frustum.right.c / t
frustum.right.d = frustum.right.d / t
-- Extract the BOTTOM plane
frustum.bottom = {}
frustum.bottom.a = a[4] + a[2]
frustum.bottom.b = a[8] + a[6]
frustum.bottom.c = a[12] + a[10]
frustum.bottom.d = a[16] + a[14]
-- Normalize the result
t = sqrt(frustum.bottom.a * frustum.bottom.a + frustum.bottom.b * frustum.bottom.b + frustum.bottom.c * frustum.bottom.c)
frustum.bottom.a = frustum.bottom.a / t
frustum.bottom.b = frustum.bottom.b / t
frustum.bottom.c = frustum.bottom.c / t
frustum.bottom.d = frustum.bottom.d / t
-- Extract the TOP plane
frustum.top = {}
frustum.top.a = a[4] - a[2]
frustum.top.b = a[8] - a[6]
frustum.top.c = a[12] - a[10]
frustum.top.d = a[16] - a[14]
-- Normalize the result
t = sqrt(frustum.top.a * frustum.top.a + frustum.top.b * frustum.top.b + frustum.top.c * frustum.top.c)
frustum.top.a = frustum.top.a / t
frustum.top.b = frustum.top.b / t
frustum.top.c = frustum.top.c / t
frustum.top.d = frustum.top.d / t
-- Extract the NEAR plane
frustum.near = {}
frustum.near.a = a[4] + a[3]
frustum.near.b = a[8] + a[7]
frustum.near.c = a[12] + a[11]
frustum.near.d = a[16] + a[15]
-- Normalize the result
t = sqrt(frustum.near.a * frustum.near.a + frustum.near.b * frustum.near.b + frustum.near.c * frustum.near.c)
frustum.near.a = frustum.near.a / t
frustum.near.b = frustum.near.b / t
frustum.near.c = frustum.near.c / t
frustum.near.d = frustum.near.d / t
if not infinite then
-- Extract the FAR plane
frustum.far = {}
frustum.far.a = a[4] - a[3]
frustum.far.b = a[8] - a[7]
frustum.far.c = a[12] - a[11]
frustum.far.d = a[16] - a[15]
-- Normalize the result
t = sqrt(frustum.far.a * frustum.far.a + frustum.far.b * frustum.far.b + frustum.far.c * frustum.far.c)
frustum.far.a = frustum.far.a / t
frustum.far.b = frustum.far.b / t
frustum.far.c = frustum.far.c / t
frustum.far.d = frustum.far.d / t
end
return frustum
end
function mat4_mt.__index(t, k)
if type(t) == "cdata" then
if type(k) == "number" then
return t._m[k-1]
end
end
return rawget(mat4, k)
end
function mat4_mt.__newindex(t, k, v)
if type(t) == "cdata" then
if type(k) == "number" then
t._m[k-1] = v
end
end
end
mat4_mt.__tostring = mat4.to_string
function mat4_mt.__call(_, a)
return mat4.new(a)
end
function mat4_mt.__unm(a)
return new():invert(a)
end
function mat4_mt.__eq(a, b)
if not mat4.is_mat4(a) or not mat4.is_mat4(b) then
return false
end
for i = 1, 16 do
if not utils.tolerance(b[i]-a[i], constants.FLT_EPSILON) then
return false
end
end
return true
end
function mat4_mt.__mul(a, b)
precond.assert(mat4.is_mat4(a), "__mul: Wrong argument type '%s' for left hand operand. (<cpml.mat4> expected)", type(a))
if vec3.is_vec3(b) then
return mat4.mul_vec3_perspective(vec3(), a, b)
end
assert(mat4.is_mat4(b) or #b == 4, "__mul: Wrong argument type for right hand operand. (<cpml.mat4> or table #4 expected)")
if mat4.is_mat4(b) then
return new():mul(a, b)
end
return mat4.mul_vec4({}, a, b)
end
if status then
xpcall(function() -- Allow this to silently fail; assume failure means someone messed with package.loaded
ffi.metatype(new, mat4_mt)
end, function() end)
end
return setmetatable({}, mat4_mt)