548 lines
17 KiB
Lua
548 lines
17 KiB
Lua
#!/usr/bin/env lua
|
|
-- If this variable is true, then strict type checking is performed for all
|
|
-- operations. This may result in slower code, but it will allow you to catch
|
|
-- errors and bugs earlier.
|
|
local strict = true
|
|
|
|
--------------------------------------------------------------------------------
|
|
|
|
local bigint = {}
|
|
|
|
local named_powers = require("libs.bigint.named-powers-of-ten")
|
|
|
|
-- Create a new bigint or convert a number or string into a big
|
|
-- Returns an empty, positive bigint if no number or string is given
|
|
function bigint.new(num)
|
|
local self = {
|
|
sign = "+",
|
|
digits = {}
|
|
}
|
|
|
|
-- Return a new bigint with the same sign and digits
|
|
function self:clone()
|
|
local newint = bigint.new()
|
|
newint.sign = self.sign
|
|
for _, digit in pairs(self.digits) do
|
|
newint.digits[#newint.digits + 1] = digit
|
|
end
|
|
return newint
|
|
end
|
|
|
|
setmetatable(self, {
|
|
__add = function(lhs, rhs)
|
|
return bigint.add(lhs, rhs)
|
|
end,
|
|
__unm = function()
|
|
if (self.sign == "+") then
|
|
self.sign = "-"
|
|
else
|
|
self.sign = "+"
|
|
end
|
|
return self
|
|
end,
|
|
__sub = function(lhs, rhs)
|
|
return bigint.subtract(lhs, rhs)
|
|
end,
|
|
__mul = function(lhs, rhs)
|
|
return bigint.multiply(lhs, rhs)
|
|
end,
|
|
__div = function(lhs, rhs)
|
|
return bigint.divide(lhs, rhs)
|
|
end,
|
|
__mod = function(lhs, rhs)
|
|
return bigint.modulus(lhs, rhs)
|
|
end,
|
|
__pow = function(lhs, rhs)
|
|
return bigint.exponentiate(lhs, rhs)
|
|
end,
|
|
__tostring = function()
|
|
return bigint.unserialize(self, "s")
|
|
end
|
|
})
|
|
|
|
if (num) then
|
|
local num_string = tostring(num)
|
|
for digit in string.gmatch(num_string, "[0-9]") do
|
|
table.insert(self.digits, tonumber(digit))
|
|
end
|
|
if string.sub(num_string, 1, 1) == "-" then
|
|
self.sign = "-"
|
|
end
|
|
end
|
|
|
|
return self
|
|
end
|
|
|
|
-- Check the type of a big
|
|
-- Normally only runs when global variable "strict" == true, but checking can be
|
|
-- forced by supplying "true" as the second argument.
|
|
function bigint.check(big, force)
|
|
if (strict or force) then
|
|
assert(#big.digits > 0, "bigint is empty")
|
|
assert(type(big.sign) == "string", "bigint is unsigned")
|
|
for _, digit in pairs(big.digits) do
|
|
assert(type(digit) == "number", digit .. " is not a number")
|
|
assert(digit <= 9 and digit >= 0, digit .. " is not between 0 and 9")
|
|
assert(math.floor(digit) == digit, digit .. " is not an integer")
|
|
end
|
|
end
|
|
return true
|
|
end
|
|
|
|
-- Return a new big with the same digits but with a positive sign (absolute
|
|
-- value)
|
|
function bigint.abs(big)
|
|
bigint.check(big)
|
|
local result = big:clone()
|
|
result.sign = "+"
|
|
return result
|
|
end
|
|
|
|
-- Return the number of digits in the big
|
|
function bigint.digits(big)
|
|
bigint.check(big)
|
|
return #big.digits
|
|
end
|
|
|
|
-- Convert a big to a number or string
|
|
function bigint.unserialize(big, output_type, precision)
|
|
bigint.check(big)
|
|
|
|
local num = ""
|
|
if big.sign == "-" then
|
|
num = "-"
|
|
end
|
|
|
|
|
|
if ((output_type == nil)
|
|
or (output_type == "number")
|
|
or (output_type == "n")
|
|
or (output_type == "string")
|
|
or (output_type == "s")) then
|
|
-- Unserialization to a string or number requires reconstructing the
|
|
-- entire number
|
|
|
|
for _, digit in pairs(big.digits) do
|
|
num = num .. math.floor(digit) -- lazy way of getting rid of .0$
|
|
end
|
|
|
|
if ((output_type == nil)
|
|
or (output_type == "number")
|
|
or (output_type == "n")) then
|
|
return tonumber(num)
|
|
else
|
|
return num
|
|
end
|
|
|
|
else
|
|
-- Unserialization to human-readable form or scientific notation only
|
|
-- requires reading the first few digits
|
|
if (precision == nil) then
|
|
precision = math.min(#big.digits, 3)
|
|
else
|
|
assert(precision > 0, "Precision cannot be less than 1")
|
|
assert(math.floor(precision) == precision,
|
|
"Precision must be a positive integer")
|
|
end
|
|
|
|
-- num is the first (precision + 1) digits, the first being separated by
|
|
-- a decimal point from the others
|
|
num = num .. math.floor(big.digits[1])
|
|
if (precision > 1) then
|
|
num = num .. "."
|
|
for i = 1, (precision - 1) do
|
|
num = num .. math.floor(big.digits[i + 1])
|
|
end
|
|
end
|
|
|
|
if ((output_type == "human-readable")
|
|
or (output_type == "human")
|
|
or (output_type == "h"))
|
|
and (#big.digits >= 3 and #big.digits <= 10002) then
|
|
-- Human-readable output contributed by 123eee555
|
|
|
|
local name
|
|
local walkback = 0 -- Used to enumerate "ten", "hundred", etc
|
|
|
|
-- Walk backwards in the index of named_powers starting at the
|
|
-- number of digits of the input until the first value is found
|
|
for i = (#big.digits - 1), (#big.digits - 4), -1 do
|
|
name = named_powers[i]
|
|
if (name) then
|
|
if (walkback == 1) then
|
|
name = "ten " .. name
|
|
elseif (walkback == 2) then
|
|
name = "hundred " .. name
|
|
end
|
|
break
|
|
else
|
|
walkback = walkback + 1
|
|
end
|
|
end
|
|
|
|
return num .. " " .. name
|
|
|
|
else
|
|
return num .. "*10^" .. (#big.digits - 1)
|
|
end
|
|
|
|
end
|
|
end
|
|
|
|
-- Basic comparisons
|
|
-- Accepts symbols (<, >=, ~=) and Unix shell-like options (lt, ge, ne)
|
|
function bigint.compare(big1, big2, comparison)
|
|
bigint.check(big1)
|
|
bigint.check(big2)
|
|
|
|
local greater = false -- If big1.digits > big2.digits
|
|
local equal = false
|
|
|
|
if (big1.sign == "-") and (big2.sign == "+") then
|
|
greater = false
|
|
elseif (#big1.digits > #big2.digits)
|
|
or ((big1.sign == "+") and (big2.sign == "-")) then
|
|
greater = true
|
|
elseif (#big1.digits == #big2.digits) then
|
|
-- Walk left to right, comparing digits
|
|
for digit = 1, #big1.digits do
|
|
if (big1.digits[digit] > big2.digits[digit]) then
|
|
greater = true
|
|
break
|
|
elseif (big2.digits[digit] > big1.digits[digit]) then
|
|
break
|
|
elseif (digit == #big1.digits)
|
|
and (big1.digits[digit] == big2.digits[digit]) then
|
|
equal = true
|
|
end
|
|
end
|
|
|
|
end
|
|
|
|
-- If both numbers are negative, then the requirements for greater are
|
|
-- reversed
|
|
if (not equal) and (big1.sign == "-") and (big2.sign == "-") then
|
|
greater = not greater
|
|
end
|
|
|
|
return (((comparison == "<") or (comparison == "lt"))
|
|
and ((not greater) and (not equal)) and true)
|
|
or (((comparison == ">") or (comparison == "gt"))
|
|
and ((greater) and (not equal)) and true)
|
|
or (((comparison == "==") or (comparison == "eq"))
|
|
and (equal) and true)
|
|
or (((comparison == ">=") or (comparison == "ge"))
|
|
and (equal or greater) and true)
|
|
or (((comparison == "<=") or (comparison == "le"))
|
|
and (equal or not greater) and true)
|
|
or (((comparison == "~=") or (comparison == "!=") or (comparison == "ne"))
|
|
and (not equal) and true)
|
|
or false
|
|
end
|
|
|
|
-- BACKEND: Add big1 and big2, ignoring signs
|
|
function bigint.add_raw(big1, big2)
|
|
bigint.check(big1)
|
|
bigint.check(big2)
|
|
|
|
local result = bigint.new()
|
|
local max_digits = 0
|
|
local carry = 0
|
|
|
|
if (#big1.digits >= #big2.digits) then
|
|
max_digits = #big1.digits
|
|
else
|
|
max_digits = #big2.digits
|
|
end
|
|
|
|
-- Walk backwards right to left, like in long addition
|
|
for digit = 0, max_digits - 1 do
|
|
local sum = (big1.digits[#big1.digits - digit] or 0)
|
|
+ (big2.digits[#big2.digits - digit] or 0)
|
|
+ carry
|
|
|
|
if (sum >= 10) then
|
|
carry = 1
|
|
sum = sum - 10
|
|
else
|
|
carry = 0
|
|
end
|
|
|
|
result.digits[max_digits - digit] = sum
|
|
end
|
|
|
|
-- Leftover carry in cases when #big1.digits == #big2.digits and sum > 10, ex. 7 + 9
|
|
if (carry == 1) then
|
|
table.insert(result.digits, 1, 1)
|
|
end
|
|
|
|
return result
|
|
|
|
end
|
|
|
|
-- BACKEND: Subtract big2 from big1, ignoring signs
|
|
function bigint.subtract_raw(big1, big2)
|
|
-- Type checking is done by bigint.compare
|
|
assert(bigint.compare(bigint.abs(big1), bigint.abs(big2), ">="),
|
|
"Size of " .. bigint.unserialize(big1, "string") .. " is less than "
|
|
.. bigint.unserialize(big2, "string"))
|
|
|
|
local result = big1:clone()
|
|
local max_digits = #big1.digits
|
|
local borrow = 0
|
|
|
|
-- Logic mostly copied from bigint.add_raw ---------------------------------
|
|
-- Walk backwards right to left, like in long subtraction
|
|
for digit = 0, max_digits - 1 do
|
|
local diff = (big1.digits[#big1.digits - digit] or 0)
|
|
- (big2.digits[#big2.digits - digit] or 0)
|
|
- borrow
|
|
|
|
if (diff < 0) then
|
|
borrow = 1
|
|
diff = diff + 10
|
|
else
|
|
borrow = 0
|
|
end
|
|
|
|
result.digits[max_digits - digit] = diff
|
|
end
|
|
----------------------------------------------------------------------------
|
|
|
|
|
|
-- Strip leading zeroes if any, but not if 0 is the only digit
|
|
while (#result.digits > 1) and (result.digits[1] == 0) do
|
|
table.remove(result.digits, 1)
|
|
end
|
|
|
|
return result
|
|
end
|
|
|
|
-- FRONTEND: Addition and subtraction operations, accounting for signs
|
|
function bigint.add(big1, big2)
|
|
-- Type checking is done by bigint.compare
|
|
|
|
local result
|
|
|
|
-- If adding numbers of different sign, subtract the smaller sized one from
|
|
-- the bigger sized one and take the sign of the bigger sized one
|
|
if (big1.sign ~= big2.sign) then
|
|
if (bigint.compare(bigint.abs(big1), bigint.abs(big2), ">")) then
|
|
result = bigint.subtract_raw(big1, big2)
|
|
result.sign = big1.sign
|
|
else
|
|
result = bigint.subtract_raw(big2, big1)
|
|
result.sign = big2.sign
|
|
end
|
|
|
|
elseif (big1.sign == "+") and (big2.sign == "+") then
|
|
result = bigint.add_raw(big1, big2)
|
|
|
|
elseif (big1.sign == "-") and (big2.sign == "-") then
|
|
result = bigint.add_raw(big1, big2)
|
|
result.sign = "-"
|
|
end
|
|
|
|
return result
|
|
end
|
|
function bigint.subtract(big1, big2)
|
|
-- Type checking is done by bigint.compare in bigint.add
|
|
-- Subtracting is like adding a negative
|
|
local big2_local = big2:clone()
|
|
if (big2.sign == "+") then
|
|
big2_local.sign = "-"
|
|
else
|
|
big2_local.sign = "+"
|
|
end
|
|
return bigint.add(big1, big2_local)
|
|
end
|
|
|
|
-- BACKEND: Multiply a big by a single digit big, ignoring signs
|
|
function bigint.multiply_single(big1, big2)
|
|
bigint.check(big1)
|
|
bigint.check(big2)
|
|
assert(#big2.digits == 1, bigint.unserialize(big2, "string")
|
|
.. " has more than one digit")
|
|
|
|
local result = bigint.new()
|
|
local carry = 0
|
|
|
|
-- Logic mostly copied from bigint.add_raw ---------------------------------
|
|
-- Walk backwards right to left, like in long multiplication
|
|
for digit = 0, #big1.digits - 1 do
|
|
local this_digit = big1.digits[#big1.digits - digit]
|
|
* big2.digits[1]
|
|
+ carry
|
|
|
|
if (this_digit >= 10) then
|
|
carry = math.floor(this_digit / 10)
|
|
this_digit = this_digit - (carry * 10)
|
|
else
|
|
carry = 0
|
|
end
|
|
|
|
result.digits[#big1.digits - digit] = this_digit
|
|
end
|
|
|
|
-- Leftover carry in cases when big1.digits[1] * big2.digits[1] > 0
|
|
if (carry > 0) then
|
|
table.insert(result.digits, 1, carry)
|
|
end
|
|
----------------------------------------------------------------------------
|
|
|
|
return result
|
|
end
|
|
|
|
-- FRONTEND: Multiply two bigs, accounting for signs
|
|
function bigint.multiply(big1, big2)
|
|
-- Type checking done by bigint.multiply_single
|
|
|
|
local result = bigint.new(0)
|
|
local larger, smaller -- Larger and smaller in terms of digits, not size
|
|
|
|
if (bigint.unserialize(big1) == 0) or (bigint.unserialize(big2) == 0) then
|
|
return result
|
|
end
|
|
|
|
if (#big1.digits >= #big2.digits) then
|
|
larger = big1
|
|
smaller = big2
|
|
else
|
|
larger = big2
|
|
smaller = big1
|
|
end
|
|
|
|
-- Walk backwards right to left, like in long multiplication
|
|
for digit = 0, #smaller.digits - 1 do
|
|
-- Sorry for going over column 80! There's lots of big names here
|
|
local this_digit_product = bigint.multiply_single(larger,
|
|
bigint.new(smaller.digits[#smaller.digits - digit]))
|
|
|
|
-- "Placeholding zeroes"
|
|
if (digit > 0) then
|
|
for placeholder = 1, digit do
|
|
table.insert(this_digit_product.digits, 0)
|
|
end
|
|
end
|
|
|
|
result = bigint.add(result, this_digit_product)
|
|
end
|
|
|
|
if (larger.sign == smaller.sign) then
|
|
result.sign = "+"
|
|
else
|
|
result.sign = "-"
|
|
end
|
|
|
|
return result
|
|
end
|
|
|
|
-- Raise a big to a positive integer or big power (TODO: negative integer power)
|
|
function bigint.exponentiate(big, power)
|
|
-- Type checking for big done by bigint.multiply
|
|
assert(bigint.compare(power, bigint.new(0), ">="),
|
|
" negative powers are not supported")
|
|
local exp = power:clone()
|
|
|
|
if (bigint.compare(exp, bigint.new(0), "==")) then
|
|
return bigint.new(1)
|
|
elseif (bigint.compare(exp, bigint.new(1), "==")) then
|
|
return big
|
|
else
|
|
local result = bigint.new(1)
|
|
local base = big:clone()
|
|
|
|
while (true) do
|
|
if (bigint.compare(
|
|
bigint.modulus(exp, bigint.new(2)), bigint.new(1), "=="
|
|
)) then
|
|
result = bigint.multiply(result, base)
|
|
end
|
|
if (bigint.compare(exp, bigint.new(1), "==")) then
|
|
break
|
|
else
|
|
exp = bigint.divide(exp, bigint.new(2))
|
|
base = bigint.multiply(base, base)
|
|
end
|
|
end
|
|
|
|
return result
|
|
end
|
|
|
|
end
|
|
|
|
-- BACKEND: Divide two bigs (decimals not supported), returning big result and
|
|
-- big remainder
|
|
-- WARNING: Only supports positive integers
|
|
function bigint.divide_raw(big1, big2)
|
|
-- Type checking done by bigint.compare
|
|
if (bigint.compare(big1, big2, "==")) then
|
|
return bigint.new(1), bigint.new(0)
|
|
elseif (bigint.compare(big1, big2, "<")) then
|
|
return bigint.new(0), big1:clone()
|
|
else
|
|
assert(bigint.compare(big2, bigint.new(0), "!="), "error: divide by zero")
|
|
assert(big1.sign == "+", "error: big1 is not positive")
|
|
assert(big2.sign == "+", "error: big2 is not positive")
|
|
|
|
local result = bigint.new()
|
|
|
|
local dividend = bigint.new() -- Dividend of a single operation
|
|
|
|
local neg_zero = bigint.new(0)
|
|
neg_zero.sign = "-"
|
|
|
|
for i = 1, #big1.digits do
|
|
-- Fixes a negative zero bug
|
|
if (#dividend.digits ~= 0) and (bigint.compare(dividend, neg_zero, "==")) then
|
|
dividend = bigint.new()
|
|
end
|
|
|
|
table.insert(dividend.digits, big1.digits[i])
|
|
|
|
local factor = bigint.new(0)
|
|
while bigint.compare(dividend, big2, ">=") do
|
|
dividend = bigint.subtract(dividend, big2)
|
|
factor = bigint.add(factor, bigint.new(1))
|
|
end
|
|
|
|
for i = 0, #factor.digits - 1 do
|
|
result.digits[#result.digits + 1 - i] = factor.digits[i + 1]
|
|
end
|
|
end
|
|
|
|
-- Remove leading zeros from result
|
|
while (result.digits[1] == 0) do
|
|
table.remove(result.digits, 1)
|
|
end
|
|
|
|
return result, dividend
|
|
end
|
|
end
|
|
|
|
-- FRONTEND: Divide two bigs (decimals not supported), returning big result and
|
|
-- big remainder, accounting for signs
|
|
function bigint.divide(big1, big2)
|
|
local result, remainder = bigint.divide_raw(bigint.abs(big1),
|
|
bigint.abs(big2))
|
|
if (big1.sign == big2.sign) then
|
|
result.sign = "+"
|
|
else
|
|
result.sign = "-"
|
|
end
|
|
|
|
return result, remainder
|
|
end
|
|
|
|
-- FRONTEND: Return only the remainder from bigint.divide
|
|
function bigint.modulus(big1, big2)
|
|
local result, remainder = bigint.divide(big1, big2)
|
|
|
|
-- Remainder will always have the same sign as the dividend per C standard
|
|
-- https://en.wikipedia.org/wiki/Modulo_operation#Remainder_calculation_for_the_modulo_operation
|
|
remainder.sign = big1.sign
|
|
return remainder
|
|
end
|
|
|
|
return bigint
|