--- A 3 component vector. -- @module vec3 local modules = (...):gsub('%.[^%.]+$', '') .. "." local precond = require(modules .. "_private_precond") local private = require(modules .. "_private_utils") local sqrt = math.sqrt local cos = math.cos local sin = math.sin local vec3 = {} local vec3_mt = {} -- Private constructor. local function new(x, y, z) return setmetatable({ x = x or 0, y = y or 0, z = z or 0 }, vec3_mt) end -- Do the check to see if JIT is enabled. If so use the optimized FFI structs. local status, ffi if type(jit) == "table" and jit.status() then status, ffi = pcall(require, "ffi") if status then ffi.cdef "typedef struct { double x, y, z;} cpml_vec3;" new = ffi.typeof("cpml_vec3") end end --- Constants -- @table vec3 -- @field unit_x X axis of rotation -- @field unit_y Y axis of rotation -- @field unit_z Z axis of rotation -- @field zero Empty vector vec3.unit_x = new(1, 0, 0) vec3.unit_y = new(0, 1, 0) vec3.unit_z = new(0, 0, 1) vec3.zero = new(0, 0, 0) --- The public constructor. -- @param x Can be of three types:
-- number X component -- table {x, y, z} or {x=x, y=y, z=z} -- scalar To fill the vector eg. {x, x, x} -- @tparam number y Y component -- @tparam number z Z component -- @treturn vec3 out function vec3.new(x, y, z) -- number, number, number if x and y and z then precond.typeof(x, "number", "new: Wrong argument type for x") precond.typeof(y, "number", "new: Wrong argument type for y") precond.typeof(z, "number", "new: Wrong argument type for z") return new(x, y, z) -- {x, y, z} or {x=x, y=y, z=z} elseif type(x) == "table" or type(x) == "cdata" then -- table in vanilla lua, cdata in luajit local xx, yy, zz = x.x or x[1], x.y or x[2], x.z or x[3] precond.typeof(xx, "number", "new: Wrong argument type for x") precond.typeof(yy, "number", "new: Wrong argument type for y") precond.typeof(zz, "number", "new: Wrong argument type for z") return new(xx, yy, zz) -- number elseif type(x) == "number" then return new(x, x, x) else return new() end end --- Clone a vector. -- @tparam vec3 a Vector to be cloned -- @treturn vec3 out function vec3.clone(a) return new(a.x, a.y, a.z) end --- Add two vectors. -- @tparam vec3 a Left hand operand -- @tparam vec3 b Right hand operand -- @treturn vec3 out function vec3.add(a, b) return new( a.x + b.x, a.y + b.y, a.z + b.z ) end --- Subtract one vector from another. -- Order: If a and b are positions, computes the direction and distance from b -- to a. -- @tparam vec3 a Left hand operand -- @tparam vec3 b Right hand operand -- @treturn vec3 out function vec3.sub(a, b) return new( a.x - b.x, a.y - b.y, a.z - b.z ) end --- Multiply a vector by another vector. -- Component-wise multiplication not matrix multiplication. -- @tparam vec3 a Left hand operand -- @tparam vec3 b Right hand operand -- @treturn vec3 out function vec3.mul(a, b) return new( a.x * b.x, a.y * b.y, a.z * b.z ) end --- Divide a vector by another. -- Component-wise inv multiplication. Like a non-uniform scale(). -- @tparam vec3 a Left hand operand -- @tparam vec3 b Right hand operand -- @treturn vec3 out function vec3.div(a, b) return new( a.x / b.x, a.y / b.y, a.z / b.z ) end --- Scale a vector to unit length (1). -- @tparam vec3 a vector to normalize -- @treturn vec3 out function vec3.normalize(a) if a:is_zero() then return new() end return a:scale(1 / a:len()) end --- Scale a vector to unit length (1), and return the input length. -- @tparam vec3 a vector to normalize -- @treturn vec3 out -- @treturn number input vector length function vec3.normalize_len(a) if a:is_zero() then return new(), 0 end local len = a:len() return a:scale(1 / len), len end --- Trim a vector to a given length -- @tparam vec3 a vector to be trimmed -- @tparam number len Length to trim the vector to -- @treturn vec3 out function vec3.trim(a, len) return a:normalize():scale(math.min(a:len(), len)) end --- Get the cross product of two vectors. -- Resulting direction is right-hand rule normal of plane defined by a and b. -- Magnitude is the area spanned by the parallelograms that a and b span. -- Order: Direction determined by right-hand rule. -- @tparam vec3 a Left hand operand -- @tparam vec3 b Right hand operand -- @treturn vec3 out function vec3.cross(a, b) return new( a.y * b.z - a.z * b.y, a.z * b.x - a.x * b.z, a.x * b.y - a.y * b.x ) end --- Get the dot product of two vectors. -- @tparam vec3 a Left hand operand -- @tparam vec3 b Right hand operand -- @treturn number dot function vec3.dot(a, b) return a.x * b.x + a.y * b.y + a.z * b.z end --- Get the length of a vector. -- @tparam vec3 a Vector to get the length of -- @treturn number len function vec3.len(a) return sqrt(a.x * a.x + a.y * a.y + a.z * a.z) end --- Get the squared length of a vector. -- @tparam vec3 a Vector to get the squared length of -- @treturn number len function vec3.len2(a) return a.x * a.x + a.y * a.y + a.z * a.z end --- Get the distance between two vectors. -- @tparam vec3 a Left hand operand -- @tparam vec3 b Right hand operand -- @treturn number dist function vec3.dist(a, b) local dx = a.x - b.x local dy = a.y - b.y local dz = a.z - b.z return sqrt(dx * dx + dy * dy + dz * dz) end --- Get the squared distance between two vectors. -- @tparam vec3 a Left hand operand -- @tparam vec3 b Right hand operand -- @treturn number dist function vec3.dist2(a, b) local dx = a.x - b.x local dy = a.y - b.y local dz = a.z - b.z return dx * dx + dy * dy + dz * dz end --- Scale a vector by a scalar. -- @tparam vec3 a Left hand operand -- @tparam number b Right hand operand -- @treturn vec3 out function vec3.scale(a, b) return new( a.x * b, a.y * b, a.z * b ) end --- Rotate vector about an axis. -- @tparam vec3 a Vector to rotate -- @tparam number phi Angle to rotate vector by (in radians) -- @tparam vec3 axis Axis to rotate by -- @treturn vec3 out function vec3.rotate(a, phi, axis) if not vec3.is_vec3(axis) then return a end local u = axis:normalize() local c = cos(phi) local s = sin(phi) -- Calculate generalized rotation matrix local m1 = new((c + u.x * u.x * (1 - c)), (u.x * u.y * (1 - c) - u.z * s), (u.x * u.z * (1 - c) + u.y * s)) local m2 = new((u.y * u.x * (1 - c) + u.z * s), (c + u.y * u.y * (1 - c)), (u.y * u.z * (1 - c) - u.x * s)) local m3 = new((u.z * u.x * (1 - c) - u.y * s), (u.z * u.y * (1 - c) + u.x * s), (c + u.z * u.z * (1 - c)) ) return new( a:dot(m1), a:dot(m2), a:dot(m3) ) end --- Get the perpendicular vector of a vector. -- @tparam vec3 a Vector to get perpendicular axes from -- @treturn vec3 out function vec3.perpendicular(a) return new(-a.y, a.x, 0) end --- Lerp between two vectors. -- @tparam vec3 a Left hand operand -- @tparam vec3 b Right hand operand -- @tparam number s Step value -- @treturn vec3 out function vec3.lerp(a, b, s) return a + (b - a) * s end -- Round all components to nearest int (or other precision). -- @tparam vec3 a Vector to round. -- @tparam precision Digits after the decimal (round numebr if unspecified) -- @treturn vec3 Rounded vector function vec3.round(a, precision) return vec3.new(private.round(a.x, precision), private.round(a.y, precision), private.round(a.z, precision)) end --- Unpack a vector into individual components. -- @tparam vec3 a Vector to unpack -- @treturn number x -- @treturn number y -- @treturn number z function vec3.unpack(a) return a.x, a.y, a.z end --- Return the component-wise minimum of two vectors. -- @tparam vec3 a Left hand operand -- @tparam vec3 b Right hand operand -- @treturn vec3 A vector where each component is the lesser value for that component between the two given vectors. function vec3.component_min(a, b) return new(math.min(a.x, b.x), math.min(a.y, b.y), math.min(a.z, b.z)) end --- Return the component-wise maximum of two vectors. -- @tparam vec3 a Left hand operand -- @tparam vec3 b Right hand operand -- @treturn vec3 A vector where each component is the lesser value for that component between the two given vectors. function vec3.component_max(a, b) return new(math.max(a.x, b.x), math.max(a.y, b.y), math.max(a.z, b.z)) end -- Negate x axis only of vector. -- @tparam vec3 a Vector to x-flip. -- @treturn vec3 x-flipped vector function vec3.flip_x(a) return vec3.new(-a.x, a.y, a.z) end -- Negate y axis only of vector. -- @tparam vec3 a Vector to y-flip. -- @treturn vec3 y-flipped vector function vec3.flip_y(a) return vec3.new(a.x, -a.y, a.z) end -- Negate z axis only of vector. -- @tparam vec3 a Vector to z-flip. -- @treturn vec3 z-flipped vector function vec3.flip_z(a) return vec3.new(a.x, a.y, -a.z) end function vec3.angle_to(a, b) local v = a:normalize():dot(b:normalize()) return math.acos(v) end --- Return a boolean showing if a table is or is not a vec3. -- @tparam vec3 a Vector to be tested -- @treturn boolean is_vec3 function vec3.is_vec3(a) if type(a) == "cdata" then return ffi.istype("cpml_vec3", a) end return type(a) == "table" and type(a.x) == "number" and type(a.y) == "number" and type(a.z) == "number" end --- Return a boolean showing if a table is or is not a zero vec3. -- @tparam vec3 a Vector to be tested -- @treturn boolean is_zero function vec3.is_zero(a) return a.x == 0 and a.y == 0 and a.z == 0 end --- Return whether any component is NaN -- @tparam vec3 a Vector to be tested -- @treturn boolean if x,y, or z are nan function vec3.has_nan(a) return private.is_nan(a.x) or private.is_nan(a.y) or private.is_nan(a.z) end --- Return a formatted string. -- @tparam vec3 a Vector to be turned into a string -- @treturn string formatted function vec3.to_string(a) return string.format("(%+0.3f,%+0.3f,%+0.3f)", a.x, a.y, a.z) end vec3_mt.__index = vec3 vec3_mt.__tostring = vec3.to_string function vec3_mt.__call(_, x, y, z) return vec3.new(x, y, z) end function vec3_mt.__unm(a) return new(-a.x, -a.y, -a.z) end function vec3_mt.__eq(a, b) if not vec3.is_vec3(a) or not vec3.is_vec3(b) then return false end return a.x == b.x and a.y == b.y and a.z == b.z end function vec3_mt.__add(a, b) precond.assert(vec3.is_vec3(a), "__add: Wrong argument type '%s' for left hand operand. ( expected)", type(a)) precond.assert(vec3.is_vec3(b), "__add: Wrong argument type '%s' for right hand operand. ( expected)", type(b)) return a:add(b) end function vec3_mt.__sub(a, b) precond.assert(vec3.is_vec3(a), "__sub: Wrong argument type '%s' for left hand operand. ( expected)", type(a)) precond.assert(vec3.is_vec3(b), "__sub: Wrong argument type '%s' for right hand operand. ( expected)", type(b)) return a:sub(b) end function vec3_mt.__mul(a, b) precond.assert(vec3.is_vec3(a), "__mul: Wrong argument type '%s' for left hand operand. ( expected)", type(a)) precond.assert(vec3.is_vec3(b) or type(b) == "number", "__mul: Wrong argument type '%s' for right hand operand. ( or expected)", type(b)) if vec3.is_vec3(b) then return a:mul(b) end return a:scale(b) end function vec3_mt.__div(a, b) precond.assert(vec3.is_vec3(a), "__div: Wrong argument type '%s' for left hand operand. ( expected)", type(a)) precond.assert(vec3.is_vec3(b) or type(b) == "number", "__div: Wrong argument type '%s' for right hand operand. ( or expected)", type(b)) if vec3.is_vec3(b) then return a:div(b) end return a:scale(1 / b) end if status then xpcall(function() -- Allow this to silently fail; assume failure means someone messed with package.loaded ffi.metatype(new, vec3_mt) end, function() end) end return setmetatable({}, vec3_mt)