--- A 2 component vector. -- @module vec2 local modules = (...):gsub('%.[^%.]+$', '') .. "." local vec3 = require(modules .. "vec3") local precond = require(modules .. "_private_precond") local private = require(modules .. "_private_utils") local acos = math.acos local atan2 = math.atan2 or math.atan local sqrt = math.sqrt local cos = math.cos local sin = math.sin local vec2 = {} local vec2_mt = {} -- Private constructor. local function new(x, y) return setmetatable({ x = x or 0, y = y or 0 }, vec2_mt) end -- Do the check to see if JIT is enabled. If so use the optimized FFI structs. local status, ffi if type(jit) == "table" and jit.status() then status, ffi = pcall(require, "ffi") if status then ffi.cdef "typedef struct { double x, y;} cpml_vec2;" new = ffi.typeof("cpml_vec2") end end --- Constants -- @table vec2 -- @field unit_x X axis of rotation -- @field unit_y Y axis of rotation -- @field zero Empty vector vec2.unit_x = new(1, 0) vec2.unit_y = new(0, 1) vec2.zero = new(0, 0) --- The public constructor. -- @param x Can be of three types:
-- number X component -- table {x, y} or {x = x, y = y} -- scalar to fill the vector eg. {x, x} -- @tparam number y Y component -- @treturn vec2 out function vec2.new(x, y) -- number, number if x and y then precond.typeof(x, "number", "new: Wrong argument type for x") precond.typeof(y, "number", "new: Wrong argument type for y") return new(x, y) -- {x, y} or {x=x, y=y} elseif type(x) == "table" or type(x) == "cdata" then -- table in vanilla lua, cdata in luajit local xx, yy = x.x or x[1], x.y or x[2] precond.typeof(xx, "number", "new: Wrong argument type for x") precond.typeof(yy, "number", "new: Wrong argument type for y") return new(xx, yy) -- number elseif type(x) == "number" then return new(x, x) else return new() end end --- Convert point from polar to cartesian. -- @tparam number radius Radius of the point -- @tparam number theta Angle of the point (in radians) -- @treturn vec2 out function vec2.from_cartesian(radius, theta) return new(radius * cos(theta), radius * sin(theta)) end --- Clone a vector. -- @tparam vec2 a Vector to be cloned -- @treturn vec2 out function vec2.clone(a) return new(a.x, a.y) end --- Add two vectors. -- @tparam vec2 a Left hand operand -- @tparam vec2 b Right hand operand -- @treturn vec2 out function vec2.add(a, b) return new( a.x + b.x, a.y + b.y ) end --- Subtract one vector from another. -- Order: If a and b are positions, computes the direction and distance from b -- to a. -- @tparam vec2 a Left hand operand -- @tparam vec2 b Right hand operand -- @treturn vec2 out function vec2.sub(a, b) return new( a.x - b.x, a.y - b.y ) end --- Multiply a vector by another vector. -- Component-size multiplication not matrix multiplication. -- @tparam vec2 a Left hand operand -- @tparam vec2 b Right hand operand -- @treturn vec2 out function vec2.mul(a, b) return new( a.x * b.x, a.y * b.y ) end --- Divide a vector by another vector. -- Component-size inv multiplication. Like a non-uniform scale(). -- @tparam vec2 a Left hand operand -- @tparam vec2 b Right hand operand -- @treturn vec2 out function vec2.div(a, b) return new( a.x / b.x, a.y / b.y ) end --- Get the normal of a vector. -- @tparam vec2 a Vector to normalize -- @treturn vec2 out function vec2.normalize(a) if a:is_zero() then return new() end return a:scale(1 / a:len()) end --- Trim a vector to a given length. -- @tparam vec2 a Vector to be trimmed -- @tparam number len Length to trim the vector to -- @treturn vec2 out function vec2.trim(a, len) return a:normalize():scale(math.min(a:len(), len)) end --- Get the cross product of two vectors. -- Order: Positive if a is clockwise from b. Magnitude is the area spanned by -- the parallelograms that a and b span. -- @tparam vec2 a Left hand operand -- @tparam vec2 b Right hand operand -- @treturn number magnitude function vec2.cross(a, b) return a.x * b.y - a.y * b.x end --- Get the dot product of two vectors. -- @tparam vec2 a Left hand operand -- @tparam vec2 b Right hand operand -- @treturn number dot function vec2.dot(a, b) return a.x * b.x + a.y * b.y end --- Get the length of a vector. -- @tparam vec2 a Vector to get the length of -- @treturn number len function vec2.len(a) return sqrt(a.x * a.x + a.y * a.y) end --- Get the squared length of a vector. -- @tparam vec2 a Vector to get the squared length of -- @treturn number len function vec2.len2(a) return a.x * a.x + a.y * a.y end --- Get the distance between two vectors. -- @tparam vec2 a Left hand operand -- @tparam vec2 b Right hand operand -- @treturn number dist function vec2.dist(a, b) local dx = a.x - b.x local dy = a.y - b.y return sqrt(dx * dx + dy * dy) end --- Get the squared distance between two vectors. -- @tparam vec2 a Left hand operand -- @tparam vec2 b Right hand operand -- @treturn number dist function vec2.dist2(a, b) local dx = a.x - b.x local dy = a.y - b.y return dx * dx + dy * dy end --- Scale a vector by a scalar. -- @tparam vec2 a Left hand operand -- @tparam number b Right hand operand -- @treturn vec2 out function vec2.scale(a, b) return new( a.x * b, a.y * b ) end --- Rotate a vector. -- @tparam vec2 a Vector to rotate -- @tparam number phi Angle to rotate vector by (in radians) -- @treturn vec2 out function vec2.rotate(a, phi) local c = cos(phi) local s = sin(phi) return new( c * a.x - s * a.y, s * a.x + c * a.y ) end --- Get the perpendicular vector of a vector. -- @tparam vec2 a Vector to get perpendicular axes from -- @treturn vec2 out function vec2.perpendicular(a) return new(-a.y, a.x) end --- Signed angle from one vector to another. -- Rotations from +x to +y are positive. -- @tparam vec2 a Vector -- @tparam vec2 b Vector -- @treturn number angle in (-pi, pi] function vec2.angle_to(a, b) if b then local angle = atan2(b.y, b.x) - atan2(a.y, a.x) -- convert to (-pi, pi] if angle > math.pi then angle = angle - 2 * math.pi elseif angle <= -math.pi then angle = angle + 2 * math.pi end return angle end return atan2(a.y, a.x) end --- Unsigned angle between two vectors. -- Directionless and thus commutative. -- @tparam vec2 a Vector -- @tparam vec2 b Vector -- @treturn number angle in [0, pi] function vec2.angle_between(a, b) if b then if vec2.is_vec2(a) then return acos(a:dot(b) / (a:len() * b:len())) end return acos(vec3.dot(a, b) / (vec3.len(a) * vec3.len(b))) end return 0 end --- Lerp between two vectors. -- @tparam vec2 a Left hand operand -- @tparam vec2 b Right hand operand -- @tparam number s Step value -- @treturn vec2 out function vec2.lerp(a, b, s) return a + (b - a) * s end --- Unpack a vector into individual components. -- @tparam vec2 a Vector to unpack -- @treturn number x -- @treturn number y function vec2.unpack(a) return a.x, a.y end --- Return the component-wise minimum of two vectors. -- @tparam vec2 a Left hand operand -- @tparam vec2 b Right hand operand -- @treturn vec2 A vector where each component is the lesser value for that component between the two given vectors. function vec2.component_min(a, b) return new(math.min(a.x, b.x), math.min(a.y, b.y)) end --- Return the component-wise maximum of two vectors. -- @tparam vec2 a Left hand operand -- @tparam vec2 b Right hand operand -- @treturn vec2 A vector where each component is the lesser value for that component between the two given vectors. function vec2.component_max(a, b) return new(math.max(a.x, b.x), math.max(a.y, b.y)) end --- Return a boolean showing if a table is or is not a vec2. -- @tparam vec2 a Vector to be tested -- @treturn boolean is_vec2 function vec2.is_vec2(a) if type(a) == "cdata" then return ffi.istype("cpml_vec2", a) end return type(a) == "table" and type(a.x) == "number" and type(a.y) == "number" end --- Return a boolean showing if a table is or is not a zero vec2. -- @tparam vec2 a Vector to be tested -- @treturn boolean is_zero function vec2.is_zero(a) return a.x == 0 and a.y == 0 end --- Return whether either value is NaN -- @tparam vec2 a Vector to be tested -- @treturn boolean if x or y is nan function vec2.has_nan(a) return private.is_nan(a.x) or private.is_nan(a.y) end --- Convert point from cartesian to polar. -- @tparam vec2 a Vector to convert -- @treturn number radius -- @treturn number theta function vec2.to_polar(a) local radius = sqrt(a.x^2 + a.y^2) local theta = atan2(a.y, a.x) theta = theta > 0 and theta or theta + 2 * math.pi return radius, theta end -- Round all components to nearest int (or other precision). -- @tparam vec2 a Vector to round. -- @tparam precision Digits after the decimal (integer if unspecified) -- @treturn vec2 Rounded vector function vec2.round(a, precision) return vec2.new(private.round(a.x, precision), private.round(a.y, precision)) end -- Negate x axis only of vector. -- @tparam vec2 a Vector to x-flip. -- @treturn vec2 x-flipped vector function vec2.flip_x(a) return vec2.new(-a.x, a.y) end -- Negate y axis only of vector. -- @tparam vec2 a Vector to y-flip. -- @treturn vec2 y-flipped vector function vec2.flip_y(a) return vec2.new(a.x, -a.y) end -- Convert vec2 to vec3. -- @tparam vec2 a Vector to convert. -- @tparam number the new z component, or nil for 0 -- @treturn vec3 Converted vector function vec2.to_vec3(a, z) return vec3(a.x, a.y, z or 0) end --- Return a formatted string. -- @tparam vec2 a Vector to be turned into a string -- @treturn string formatted function vec2.to_string(a) return string.format("(%+0.3f,%+0.3f)", a.x, a.y) end vec2_mt.__index = vec2 vec2_mt.__tostring = vec2.to_string function vec2_mt.__call(_, x, y) return vec2.new(x, y) end function vec2_mt.__unm(a) return new(-a.x, -a.y) end function vec2_mt.__eq(a, b) if not vec2.is_vec2(a) or not vec2.is_vec2(b) then return false end return a.x == b.x and a.y == b.y end function vec2_mt.__add(a, b) precond.assert(vec2.is_vec2(a), "__add: Wrong argument type '%s' for left hand operand. ( expected)", type(a)) precond.assert(vec2.is_vec2(b), "__add: Wrong argument type '%s' for right hand operand. ( expected)", type(b)) return a:add(b) end function vec2_mt.__sub(a, b) precond.assert(vec2.is_vec2(a), "__add: Wrong argument type '%s' for left hand operand. ( expected)", type(a)) precond.assert(vec2.is_vec2(b), "__add: Wrong argument type '%s' for right hand operand. ( expected)", type(b)) return a:sub(b) end function vec2_mt.__mul(a, b) precond.assert(vec2.is_vec2(a), "__mul: Wrong argument type '%s' for left hand operand. ( expected)", type(a)) assert(vec2.is_vec2(b) or type(b) == "number", "__mul: Wrong argument type for right hand operand. ( or expected)") if vec2.is_vec2(b) then return a:mul(b) end return a:scale(b) end function vec2_mt.__div(a, b) precond.assert(vec2.is_vec2(a), "__div: Wrong argument type '%s' for left hand operand. ( expected)", type(a)) assert(vec2.is_vec2(b) or type(b) == "number", "__div: Wrong argument type for right hand operand. ( or expected)") if vec2.is_vec2(b) then return a:div(b) end return a:scale(1 / b) end if status then xpcall(function() -- Allow this to silently fail; assume failure means someone messed with package.loaded ffi.metatype(new, vec2_mt) end, function() end) end return setmetatable({}, vec2_mt)