--- Various utility functions -- @module utils local modules = (...): gsub('%.[^%.]+$', '') .. "." local vec2 = require(modules .. "vec2") local vec3 = require(modules .. "vec3") local private = require(modules .. "_private_utils") local abs = math.abs local ceil = math.ceil local floor = math.floor local log = math.log local utils = {} -- reimplementation of math.frexp, due to its removal from Lua 5.3 :( -- courtesy of airstruck local log2 = log(2) local frexp = math.frexp or function(x) if x == 0 then return 0, 0 end local e = floor(log(abs(x)) / log2 + 1) return x / 2 ^ e, e end --- Clamps a value within the specified range. -- @param value Input value -- @param min Minimum output value -- @param max Maximum output value -- @return number function utils.clamp(value, min, max) return math.max(math.min(value, max), min) end --- Returns `value` if it is equal or greater than |`size`|, or 0. -- @param value -- @param size -- @return number function utils.deadzone(value, size) return abs(value) >= size and value or 0 end --- Check if value is equal or greater than threshold. -- @param value -- @param threshold -- @return boolean function utils.threshold(value, threshold) -- I know, it barely saves any typing at all. return abs(value) >= threshold end --- Check if value is equal or less than threshold. -- @param value -- @param threshold -- @return boolean function utils.tolerance(value, threshold) -- I know, it barely saves any typing at all. return abs(value) <= threshold end --- Scales a value from one range to another. -- @param value Input value -- @param min_in Minimum input value -- @param max_in Maximum input value -- @param min_out Minimum output value -- @param max_out Maximum output value -- @return number function utils.map(value, min_in, max_in, min_out, max_out) return ((value) - (min_in)) * ((max_out) - (min_out)) / ((max_in) - (min_in)) + (min_out) end --- Linear interpolation. -- Performs linear interpolation between 0 and 1 when `low` < `progress` < `high`. -- @param low value to return when `progress` is 0 -- @param high value to return when `progress` is 1 -- @param progress (0-1) -- @return number function utils.lerp(low, high, progress) return low * (1 - progress) + high * progress end --- Exponential decay -- @param low initial value -- @param high target value -- @param rate portion of the original value remaining per second -- @param dt time delta -- @return number function utils.decay(low, high, rate, dt) return utils.lerp(low, high, 1.0 - math.exp(-rate * dt)) end --- Hermite interpolation. -- Performs smooth Hermite interpolation between 0 and 1 when `low` < `progress` < `high`. -- @param progress (0-1) -- @param low value to return when `progress` is 0 -- @param high value to return when `progress` is 1 -- @return number function utils.smoothstep(progress, low, high) local t = utils.clamp((progress - low) / (high - low), 0.0, 1.0) return t * t * (3.0 - 2.0 * t) end --- Round number at a given precision. -- Truncates `value` at `precision` points after the decimal (whole number if -- left unspecified). -- @param value -- @param precision -- @return number utils.round = private.round --- Wrap `value` around if it exceeds `limit`. -- @param value -- @param limit -- @return number function utils.wrap(value, limit) if value < 0 then value = value + utils.round(((-value/limit)+1))*limit end return value % limit end --- Check if a value is a power-of-two. -- Returns true if a number is a valid power-of-two, otherwise false. -- @author undef -- @param value -- @return boolean function utils.is_pot(value) -- found here: https://love2d.org/forums/viewtopic.php?p=182219#p182219 -- check if a number is a power-of-two return (frexp(value)) == 0.5 end --- Check if a value is NaN -- Returns true if a number is not a valid number -- @param value -- @return boolean utils.is_nan = private.is_nan -- Originally from vec3 function utils.project_on(a, b) local s = (a.x * b.x + a.y * b.y + a.z or 0 * b.z or 0) / (b.x * b.x + b.y * b.y + b.z or 0 * b.z or 0) if a.z and b.z then return vec3( b.x * s, b.y * s, b.z * s ) end return vec2( b.x * s, b.y * s ) end -- Originally from vec3 function utils.project_from(a, b) local s = (b.x * b.x + b.y * b.y + b.z or 0 * b.z or 0) / (a.x * b.x + a.y * b.y + a.z or 0 * b.z or 0) if a.z and b.z then return vec3( b.x * s, b.y * s, b.z * s ) end return vec2( b.x * s, b.y * s ) end -- Originally from vec3 function utils.mirror_on(a, b) local s = (a.x * b.x + a.y * b.y + a.z or 0 * b.z or 0) / (b.x * b.x + b.y * b.y + b.z or 0 * b.z or 0) * 2 if a.z and b.z then return vec3( b.x * s - a.x, b.y * s - a.y, b.z * s - a.z ) end return vec2( b.x * s - a.x, b.y * s - a.y ) end -- Originally from vec3 function utils.reflect(i, n) return i - (n * (2 * n:dot(i))) end -- Originally from vec3 function utils.refract(i, n, ior) local d = n:dot(i) local k = 1 - ior * ior * (1 - d * d) if k >= 0 then return (i * ior) - (n * (ior * d + k ^ 0.5)) end return vec3() end --- Get the sign of a number -- returns 1 for positive values, -1 for negative and 0 for zero. -- @param value -- @return number function utils.sign(n) if n > 0 then return 1 elseif n < 0 then return -1 else return 0 end end return utils