#!/usr/bin/env lua -- If this variable is true, then strict type checking is performed for all -- operations. This may result in slower code, but it will allow you to catch -- errors and bugs earlier. local strict = true -------------------------------------------------------------------------------- local bigint = {} local named_powers = require("libs.bigint.named-powers-of-ten") -- Create a new bigint or convert a number or string into a big -- Returns an empty, positive bigint if no number or string is given function bigint.new(num) local self = { sign = "+", digits = {} } -- Return a new bigint with the same sign and digits function self:clone() local newint = bigint.new() newint.sign = self.sign for _, digit in pairs(self.digits) do newint.digits[#newint.digits + 1] = digit end return newint end setmetatable(self, { __add = function(lhs, rhs) return bigint.add(lhs, rhs) end, __unm = function() if (self.sign == "+") then self.sign = "-" else self.sign = "+" end return self end, __sub = function(lhs, rhs) return bigint.subtract(lhs, rhs) end, __mul = function(lhs, rhs) return bigint.multiply(lhs, rhs) end, __div = function(lhs, rhs) return bigint.divide(lhs, rhs) end, __mod = function(lhs, rhs) return bigint.modulus(lhs, rhs) end, __pow = function(lhs, rhs) return bigint.exponentiate(lhs, rhs) end, __eq = function(lhs, rhs) return bigint.compare(lhs, rhs, "==") end, __lt = function(lhs, rhs) return bigint.compare(lhs, rhs, "<") end, __le = function(lhs, rhs) return bigint.compare(lhs, rhs, "<=") end, __tostring = function() return bigint.unserialize(self, "s") end }) if (num) then local num_string = tostring(num) for digit in string.gmatch(num_string, "[0-9]") do table.insert(self.digits, tonumber(digit)) end if string.sub(num_string, 1, 1) == "-" then self.sign = "-" end end return self end -- Check the type of a big -- Normally only runs when global variable "strict" == true, but checking can be -- forced by supplying "true" as the second argument. function bigint.check(big, force) if (strict or force) then assert(#big.digits > 0, "bigint is empty") assert(type(big.sign) == "string", "bigint is unsigned") for _, digit in pairs(big.digits) do assert(type(digit) == "number", digit .. " is not a number") assert(digit < 10, digit .. " is greater than or equal to 10") end end return true end -- Return a new big with the same digits but with a positive sign (absolute -- value) function bigint.abs(big) bigint.check(big) local result = big:clone() result.sign = "+" return result end -- Convert a big to a number or string function bigint.unserialize(big, output_type, precision) bigint.check(big) local num = "" if big.sign == "-" then num = "-" end if ((output_type == nil) or (output_type == "number") or (output_type == "n") or (output_type == "string") or (output_type == "s")) then -- Unserialization to a string or number requires reconstructing the -- entire number for _, digit in pairs(big.digits) do num = num .. math.floor(digit) -- lazy way of getting rid of .0$ end if ((output_type == nil) or (output_type == "number") or (output_type == "n")) then return tonumber(num) else return num end else -- Unserialization to human-readable form or scientific notation only -- requires reading the first few digits if (precision == nil) then precision = 3 else assert(precision > 0, "Precision cannot be less than 1") assert(math.floor(precision) == precision, "Precision must be a positive integer") end -- num is the first (precision + 1) digits, the first being separated by -- a decimal point from the others num = num .. big.digits[1] if (precision > 1) then num = num .. "." for i = 1, (precision - 1) do num = num .. big.digits[i + 1] end end if ((output_type == "human-readable") or (output_type == "human") or (output_type == "h")) then -- Human-readable output contributed by 123eee555 local name local walkback = 0 -- Used to enumerate "ten", "hundred", etc -- Walk backwards in the index of named_powers starting at the -- number of digits of the input until the first value is found for i = (#big.digits - 1), (#big.digits - 4), -1 do name = named_powers[i] if (name) then if (walkback == 1) then name = "ten " .. name elseif (walkback == 2) then name = "hundred " .. name end break else walkback = walkback + 1 end end return num .. " " .. name else return num .. "*10^" .. (#big.digits - 1) end end end -- Basic comparisons -- Accepts symbols (<, >=, ~=) and Unix shell-like options (lt, ge, ne) function bigint.compare(big1, big2, comparison) bigint.check(big1) bigint.check(big2) local greater = false -- If big1.digits > big2.digits local equal = false if (big1.sign == "-") and (big2.sign == "+") then greater = false elseif (#big1.digits > #big2.digits) or ((big1.sign == "+") and (big2.sign == "-")) then greater = true elseif (#big1.digits == #big2.digits) then -- Walk left to right, comparing digits for digit = 1, #big1.digits do if (big1.digits[digit] > big2.digits[digit]) then greater = true break elseif (big2.digits[digit] > big1.digits[digit]) then break elseif (digit == #big1.digits) and (big1.digits[digit] == big2.digits[digit]) then equal = true end end end -- If both numbers are negative, then the requirements for greater are -- reversed if (not equal) and (big1.sign == "-") and (big2.sign == "-") then greater = not greater end return (((comparison == "<") or (comparison == "lt")) and ((not greater) and (not equal)) and true) or (((comparison == ">") or (comparison == "gt")) and ((greater) and (not equal)) and true) or (((comparison == "==") or (comparison == "eq")) and (equal) and true) or (((comparison == ">=") or (comparison == "ge")) and (equal or greater) and true) or (((comparison == "<=") or (comparison == "le")) and (equal or not greater) and true) or (((comparison == "~=") or (comparison == "!=") or (comparison == "ne")) and (not equal) and true) or false end -- BACKEND: Add big1 and big2, ignoring signs function bigint.add_raw(big1, big2) bigint.check(big1) bigint.check(big2) local result = bigint.new() local max_digits = 0 local carry = 0 if (#big1.digits >= #big2.digits) then max_digits = #big1.digits else max_digits = #big2.digits end -- Walk backwards right to left, like in long addition for digit = 0, max_digits - 1 do local sum = (big1.digits[#big1.digits - digit] or 0) + (big2.digits[#big2.digits - digit] or 0) + carry if (sum >= 10) then carry = 1 sum = sum - 10 else carry = 0 end result.digits[max_digits - digit] = sum end -- Leftover carry in cases when #big1.digits == #big2.digits and sum > 10, ex. 7 + 9 if (carry == 1) then table.insert(result.digits, 1, 1) end return result end -- BACKEND: Subtract big2 from big1, ignoring signs function bigint.subtract_raw(big1, big2) -- Type checking is done by bigint.compare assert(bigint.compare(bigint.abs(big1), bigint.abs(big2), ">="), "Size of " .. bigint.unserialize(big1, "string") .. " is less than " .. bigint.unserialize(big2, "string")) local result = big1:clone() local max_digits = #big1.digits local borrow = 0 -- Logic mostly copied from bigint.add_raw --------------------------------- -- Walk backwards right to left, like in long subtraction for digit = 0, max_digits - 1 do local diff = (big1.digits[#big1.digits - digit] or 0) - (big2.digits[#big2.digits - digit] or 0) - borrow if (diff < 0) then borrow = 1 diff = diff + 10 else borrow = 0 end result.digits[max_digits - digit] = diff end ---------------------------------------------------------------------------- -- Strip leading zeroes if any, but not if 0 is the only digit while (#result.digits > 1) and (result.digits[1] == 0) do table.remove(result.digits, 1) end return result end -- FRONTEND: Addition and subtraction operations, accounting for signs function bigint.add(big1, big2) -- Type checking is done by bigint.compare local result -- If adding numbers of different sign, subtract the smaller sized one from -- the bigger sized one and take the sign of the bigger sized one if (big1.sign ~= big2.sign) then if (bigint.compare(bigint.abs(big1), bigint.abs(big2), ">")) then result = bigint.subtract_raw(big1, big2) result.sign = big1.sign else result = bigint.subtract_raw(big2, big1) result.sign = big2.sign end elseif (big1.sign == "+") and (big2.sign == "+") then result = bigint.add_raw(big1, big2) elseif (big1.sign == "-") and (big2.sign == "-") then result = bigint.add_raw(big1, big2) result.sign = "-" end return result end function bigint.subtract(big1, big2) -- Type checking is done by bigint.compare in bigint.add -- Subtracting is like adding a negative local big2_local = big2:clone() if (big2.sign == "+") then big2_local.sign = "-" else big2_local.sign = "+" end return bigint.add(big1, big2_local) end -- BACKEND: Multiply a big by a single digit big, ignoring signs function bigint.multiply_single(big1, big2) bigint.check(big1) bigint.check(big2) assert(#big2.digits == 1, bigint.unserialize(big2, "string") .. " has more than one digit") local result = bigint.new() local carry = 0 -- Logic mostly copied from bigint.add_raw --------------------------------- -- Walk backwards right to left, like in long multiplication for digit = 0, #big1.digits - 1 do local this_digit = big1.digits[#big1.digits - digit] * big2.digits[1] + carry if (this_digit >= 10) then carry = math.floor(this_digit / 10) this_digit = this_digit - (carry * 10) else carry = 0 end result.digits[#big1.digits - digit] = this_digit end -- Leftover carry in cases when big1.digits[1] * big2.digits[1] > 0 if (carry > 0) then table.insert(result.digits, 1, carry) end ---------------------------------------------------------------------------- return result end -- FRONTEND: Multiply two bigs, accounting for signs function bigint.multiply(big1, big2) -- Type checking done by bigint.multiply_single local result = bigint.new(0) local larger, smaller -- Larger and smaller in terms of digits, not size if (bigint.unserialize(big1) == 0) or (bigint.unserialize(big2) == 0) then return result end if (#big1.digits >= #big2.digits) then larger = big1 smaller = big2 else larger = big2 smaller = big1 end -- Walk backwards right to left, like in long multiplication for digit = 0, #smaller.digits - 1 do -- Sorry for going over column 80! There's lots of big names here local this_digit_product = bigint.multiply_single(larger, bigint.new(smaller.digits[#smaller.digits - digit])) -- "Placeholding zeroes" if (digit > 0) then for placeholder = 1, digit do table.insert(this_digit_product.digits, 0) end end result = bigint.add(result, this_digit_product) end if (larger.sign == smaller.sign) then result.sign = "+" else result.sign = "-" end return result end -- Raise a big to a positive integer or big power (TODO: negative integer power) function bigint.exponentiate(big, power) -- Type checking for big done by bigint.multiply assert(bigint.compare(power, bigint.new(0), ">="), " negative powers are not supported") local exp = power:clone() if (bigint.compare(exp, bigint.new(0), "==")) then return bigint.new(1) elseif (bigint.compare(exp, bigint.new(1), "==")) then return big else local result = big:clone() while (bigint.compare(exp, bigint.new(1), ">")) do result = bigint.multiply(result, big) exp = bigint.subtract(exp, bigint.new(1)) end return result end end -- BACKEND: Divide two bigs (decimals not supported), returning big result and -- big remainder -- WARNING: Only supports positive integers function bigint.divide_raw(big1, big2) -- Type checking done by bigint.compare if (bigint.compare(big1, big2, "==")) then return bigint.new(1), bigint.new(0) elseif (bigint.compare(big1, big2, "<")) then return bigint.new(0), bigint.new(0) else assert(bigint.compare(big2, bigint.new(0), "!="), "error: divide by zero") assert(big1.sign == "+", "error: big1 is not positive") assert(big2.sign == "+", "error: big2 is not positive") local result = bigint.new() local dividend = bigint.new() -- Dividend of a single operation, not the -- dividend of the overall function local divisor = big2:clone() local factor = 1 -- Walk left to right among digits in the dividend, like in long -- division for _, digit in pairs(big1.digits) do dividend.digits[#dividend.digits + 1] = digit -- The dividend is smaller than the divisor, so a zero is appended -- to the result and the loop ends if (bigint.compare(dividend, divisor, "<")) then if (#result.digits > 0) then -- Don't add leading zeroes result.digits[#result.digits + 1] = 0 end else -- Find the maximum number of divisors that fit into the -- dividend factor = 0 while (bigint.compare(divisor, dividend, "<=")) do divisor = bigint.add(divisor, big2) factor = factor + 1 end -- Append the factor to the result if (factor == 10) then -- Fixes a weird bug that introduces a new bug if fixed by -- changing the comparison in the while loop to "<=" result.digits[#result.digits] = 1 result.digits[#result.digits + 1] = 0 else result.digits[#result.digits + 1] = factor end -- Subtract the divisor from the dividend to obtain the -- remainder, which is the new dividend for the next loop dividend = bigint.subtract(dividend, bigint.subtract(divisor, big2)) -- Reset the divisor divisor = big2:clone() end end -- The remainder of the final loop is returned as the function's -- overall remainder return result, dividend end end -- FRONTEND: Divide two bigs (decimals not supported), returning big result and -- big remainder, accounting for signs function bigint.divide(big1, big2) local result, remainder = bigint.divide_raw(bigint.abs(big1), bigint.abs(big2)) if (big1.sign == big2.sign) then result.sign = "+" else result.sign = "-" end return result, remainder end -- FRONTEND: Return only the remainder from bigint.divide function bigint.modulus(big1, big2) local result, remainder = bigint.divide(big1, big2) -- Remainder will always have the same sign as the dividend per C standard -- https://en.wikipedia.org/wiki/Modulo_operation#Remainder_calculation_for_the_modulo_operation remainder.sign = big1.sign return remainder end return bigint